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ABSTRACT

This thesis contributes to the security analysis of block ciphers and block cipher

based constructions which include message authentication codes, block cipher modes

of operation and image encryption schemes.

First, we present the best cryptanalytic results on two block ciphers, namely,

MISTY1 and SEED ciphers. These two block ciphers are the International Standard-

ization of Organization (ISO) standards. More importantly, our results show that the

MISTY1 cipher is distinguishable from an ideal cipher and thus cannot be regarded as

an ideal cipher. We also present the first known cryptanalytic attack against the full

CHAIN cipher based on a generalised impossible differential technique.

Next, we analyse both parallelisable message authentication code (PMAC) and

Galois/counter mode (GCM) against forgery and distinguishing attacks. PMAC is part

of the offset codebook (OCB) mode. Both OCB and GCM are ISO standards for

mode of operation and recommended by National Institute of Standards and Technol-

ogy. More importantly, the attack techniques developed for GCM can be applied to

Wegmen-Carter polynomial message authentication codes and counter mode encryp-

tion. Our analysis on PMAC highlights some pitfalls that designers should be mindful

of when designing cryptographic schemes which exploit the same design component,

specifically the constant generation method.

Finally, in the context of image encryption schemes, we emphasise the impor-

tance of designing a secure key schedule algorithm by showing the weakness of such

algorithms proposed in two recent image encryption schemes. Further, we disprove

a general assumption that an image encryption scheme is secure against differential

attack based on statistical tests by presenting the first impossible differential attack on

an image encryption scheme that employs such a design rule. The results presented

suggest that the designers should be mindful of widely studied cryptanalytic methods

when designing a secure image encryption scheme.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, we first motivate the research undertaken for this

thesis. We then describe the contributions of our research and finally present the overall

structure of this thesis.

1.1 Problem Statement

Due to the rapid advancement in technology, governments over the world in-

creasingly tap on opportunities provided by the next generation infrastructure with a

particular focus on coverage, affordability and quality of the access of broadband. The

improved broadband bandwidth speed at a cheaper cost enables the massive transmis-

sion of multimedia data between users more frequently. Multimedia data include text,

voice and image. In order to provide confidentiality and authenticity of data transmit-

ted over insecure communication channels at high speed, symmetric key cryptographic

primitives are frequently employed in existing security applications for communication

purposes.

Indeed, symmetric key cryptographic primitives are frequently employed in

existing security applications for communication purposes due to their superior effi-

ciency in terms of speed as compared to public key cryptographic primitives. Out of

all symmetric key cryptographic primitives, the block cipher is the most widely used

symmetric key primitive in real-life applications as the block cipher can be used as the

core component in building other symmetric key primitives such as the stream cipher,

hash function, message authentication code (MAC) and modes of operation. Some

commonly-used block ciphers and block cipher based constructions include KeeLoq

block cipher used in wireless devices that unlock the doors and alarms in cars manu-

factured by a number of automotive companies, such as Honda, Jaguar, Toyota, Volvo,

1
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Volkswagen, etc (Courtois, Bard, & Wagner, 2008), KASUMI block cipher (3GPP,

2001) (which was designed based on MISTY1 block cipher (Matsui, 1997)) used in

Universal Mobile Telecommunication System (UMTS) to provide both confidential-

ity and integrity services, SEED block cipher (KISA, 1998) used by Mozilla Firefox

web browser as a cipher to provide confidentiality service in Transport Layer Security

(TLS) protocol, Galois/counter mode (GCM) used in the IEEE MAC standard, TLS

protocol and Internet Engineering Task Force (IETF) Internet Protocol Security, off-

set codebook mode (OCB) used in IEEE wireless security standard and cipher-based

message authentication code (CMAC) (Dworkin, 2001) used in IPsec Encapsulating

Security Payload (ESP).

In order to design a block cipher which is efficient in terms of speed, designers

propose the use of simple operations, such as exclusive-or, modular addition, modular

multiplication, bitwise shift, bit-permutation and bitwise rotation operations. As sim-

ple operations are used, it is common that no security proofs are given in linking the

security of a block cipher with a mathematical hard problem. When such block cipher

is used in constructing different primitives such as MAC and authenticated encryption

scheme, designers construct the security proofs of their proposed block cipher based

primitives based on the fact that the underlying block cipher is a random permutation

even though that one cannot assure the underlying block cipher is indeed a random

permutation. Generally, designers evaluate the security of their proposed block cipher

against various conventional cryptanalytic methods (e.g., differential-like and linear at-

tacks) based on their personal experiences due to the high computation power needed

in searching a distinguisher with non-negligible probability. To boost the confidence

of public on the proposed block cipher, it is important for the third party to perform

additional security analysis on the security of block ciphers and block cipher based

constructions as such analysis serves as the certificate of its security strength and the

pitfalls that designers should be mindful of when designing a block cipher and a block

cipher based construction.

2
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1.2 Objectives

This thesis is concerned with the cryptanalysis of block ciphers and block ci-

pher based constructions which include the message authentication code, mode of op-

eration and image encryption scheme. The background of block ciphers and their

constructions will be provided in Chapter 2. To be precise, the three main objectives

of this research are listed as follows:

1. To find better differentials under different assumptions of secret key (i.e., weak

key, single key and related-key) against different block ciphers and block cipher

based constructions in terms of greater number of round and/or greater probabil-

ity.

2. To exploit the structural properties of block ciphers and block cipher based con-

structions in attacking such primitives.

3. To critique existing statistical tests based design rules of image encryption schemes

from a cryptanalytic point of view.

1.3 Contributions

Our contributions in this thesis are listed as follows:

• Cryptanalysis of block ciphers. The MISTY1 and SEED block ciphers have re-

ceived considerable attention since their publication and their security has been

thoroughly analysed as both MISTY1 and SEED block ciphers are the Inter-

national Standardization of Organization (ISO) standards for block cipher. We

present related-key differential and related-key amplified boomerang attacks on

the full MISTY1 under certain weak key assumptions. Our results are the first to

exhibit a cryptographic weakness in the full MISTY1 cipher. More importantly,

we show that the MISTY1 cipher is distinguishable from an ideal cipher and thus

cannot be regarded as an ideal cipher. Besides, we describe two 7-round differ-

entials with probabilities that are slightly larger than the best previously known

3
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one on SEED and present a differential cryptanalysis attack on a 9-round reduced

version of SEED. For SEED cipher, our result is better than any previously pub-

lished cryptanalytic results on SEED in terms of the number of attacked rounds

and it suggests for the first time that the safety margin of SEED decreases be-

low half of the number of rounds. Lastly, we present an impossible differential

attack on full CHAIN block cipher based on a generalised impossible differen-

tial. To the best of our knowledge, this is the first known cryptanalytic attack

against CHAIN which is a block cipher with a variable block length, a variable

secret key length and a variable number of rounds proposed by Peyravian and

Coppersmith (1999) from IBM.

• Cryptanalysis of message authentication codes and block cipher modes of

operation. We perform the security analysis on the GCM and the parallelis-

able message authentication code (PMAC). The result is interesting as GCM

is an ISO standard for mode of operation while PMAC is a part of the offset

codebook mode (OCB) which is an ISO standard for mode of operation too. For

GCM, it combines both counter mode encryption GCTR and a message authenti-

cation code GMAC to provide both confidentiality and authenticity. We analyse

the security of GMAC and GCM with respect to the forgery and distinguishing

attacks. The attack techniques can be applied to other Wegmen-Carter polyno-

mial message authentication codes (Wegman & Carter, 1981). We remark that

part of the results were independently found by Procter and Cid (2013). In ad-

dition, we can utilise the uniqueness of the counter mode encryption to launch

a known ciphertext attack against GCM itself. Such uniqueness of the counter

mode encryption gives rise to a technique referred to as an impossible plaintext

cryptanalysis. This technique was named and independently found by McGrew

(2012). With regards to PMAC, there exists different version of PMAC that use

different constant generation methods. We analyse how some unique character-

istics of these constants result in weaknesses of the respective PMAC designs

against forgery attacks in different ways. Thus, our analysis highlights some pit-

falls that designers should be mindful of when designing schemes which employ

such constants.

4
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• Cryptanalysis of image encryption schemes. We investigate the security of

chaos based image encryption schemes. A compulsory condition for the secu-

rity of an image encryption scheme is that the length of the external secret key

should be sufficiently long in terms of bit length. However, the sufficiently long

secret key is not a guarantee that the scheme is secure. In this thesis, we empha-

sise the importance of designing a secure Key Schedule algorithm by showing

the weakness of the Key Schedule algorithms employed in two recent image

encryption schemes proposed by X. Wang and Wang (2014) and by Norouzi and

Mirzakuchaki (2014). Besides, an image encryption scheme is said to have good

property against differential attack if the measured number of pixels change rate

(NPCR) and unified average changing intensity (UACI) are close to the ideal

values. However, we disprove such general assumptions by showing that these

two values are not adequate to conclude that an image encryption scheme is se-

cure against the impossible differential attack which is a type of differential-like

attack. To the best of our knowledge, we present the first impossible differential

attack on an image encryption scheme proposed by X. Wang and Guo (2014).

The results suggest that an image encryption scheme must be designed to with-

stand widely studied cryptanalytic methods. Most importantly, it suggests that

the current ground rule to design an image encryption scheme is inadequate to

result in a secure image encryption scheme.

1.4 Organisation of the Thesis

The remainder of this thesis is organised as follows.

• Preliminaries. In Chapter 2, we provide the background that is needed to under-

stand our results in the remainder of this thesis. We describe a block cipher and

its applications to construct message authentication codes, authenticated encryp-

tions (also known as block cipher mode of operation) and image encryptions.

Our results focus on analysing the security of block ciphers and its applications,

and thus we describe how a cryptographic design can be considered as a secure

design. In order to understand what an attack involves, we briefly describe the re-

5
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sources needed to quantify a cryptanalytic attack. Subsequently, we summarise

the commonly used cryptanalytic methods to attack block ciphers.

• Our new cryptanalytic results. In Chapter 3 to 9, we present our cryptanalytic

results on MISTY1 (Matsui, 1997), SEED (KISA, 1998), CHAIN (Peyravian &

Coppersmith, 1999), GCM (McGrew & Viega, 2005), PMAC (Black & Rog-

away, 2002; Rogaway, 2004) and some image encryption schemes (Norouzi &

Mirzakuchaki, 2014; X. Wang & Guo, 2014; X. Wang & Wang, 2014) respec-

tively. In each chapter, we begin with an introduction and the specification of

the block cipher or the block cipher based construction in question. We then

proceed to present the cryptanalytic results on these symmetric key primitives.

Finally, we summarise our findings.

• Conclusion and future work. In Chapter 10, we summarise the results obtained

in this thesis and conclude the thesis with some suggestions for future research

work.

6



www.manaraa.com

S
iti H

asm
ah D

igital Library
CHAPTER 2

PRELIMINARIES

In this chapter, we provide the background needed to understand our results in

the remainder of this thesis. In particular, we describe a block cipher and its appli-

cations to construct message authentication codes, authenticated encryption schemes

and image encryption schemes. As our results focus on the security analysis of block

ciphers and their applications, we describe how a cryptographic design can be con-

sidered as secure. In order to understand what an attack involves, we briefly explain

the resources needed to quantify a cryptanalytic attack. Subsequently, we provide the

commonly used cryptanalytic methods to attack block ciphers.

2.1 Block Cipher

2.1.1 Descriptions

As its name suggests, a block cipher is a cipher that processes an n-bit input

block to generate an n-bit output block under a k-bit secret key K. The input (respec-

tively the output) is commonly termed the plaintext P (respectively the ciphertext C).

Typically, n is 64-, 80- or 128-bit and k is 80-,128-,192- or 256-bit. To be precise, a

block cipher is a cipher that consists of the following three algorithms:

1. Key Schedule : This algorithm derives i-round subkeys rki for i > 0 under the

control of a k-bit secret key K.

2. E : This algorithm encrypts an n-bit plaintext P to an n-bit ciphertext C deter-

mined by the subkeys. Such an operation is denoted as C = EK(P).

3. D : This algorithm decrypts an n-bit ciphertext C to an n-bit plaintext P deter-

mined by the subkeys. Such an operation is denoted as P = DK(C).

7
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It is obvious that D is the inverse of E given that the same secret key is used for both

algorithms. Throughout this thesis, we denote n as the block size and k as the length

of the secret key K in bits.

2.1.2 Two Common Design Methods

The rule of thumb to design a secure block cipher is to design a weaker round

or internal function f that can provide adequate confusion and diffusion of the bits

(Shannon, 1949). Confusion means that each bit of the ciphertext should be affected

by as many bits of the secret key as possible while diffusion means that changing a

bit of the plaintext (respectively ciphertext) will change a large number of bits of the

ciphertext (respectively plaintext). Further, the round function is iterated a number

of times to form a cryptographically strong function that can encrypt a plaintext to a

ciphertext. Each iteration is known as a round and the number of iterations is called

the number of rounds r of the cipher. Such a design method forms an iterated cipher.

The two main designs to construct a block cipher are the Feistel network (FN)

and substitution-permutation network (SPN) as shown in Figure 2.1.

• Feistel network: The Feistel cipher was named after the cryptographer Horst

Feistel who designed the Lucifier block cipher (Feistel, 1970, 1973), a predeces-

sor of Data Encryption Standard (DES) (NBS, 1977) which is by far the most

popular and most widely implemented block cipher. A Feistel cipher first splits

the plaintext into two halves, specifically left half and right half. A subkey de-

pendent round function f is then applied on the right half and the output of f

will be exclusive-ored with the left half. Lastly, both halves are swapped and this

will form the input to the next round. This process will be iterated for r times.

To have the same E and D algorithms, both halves will not be swapped in the last

round. Since the same algorithm can be used for both encryption and decryption

(note that the subkeys are applied in reverse order for one of them), this leads to

a smaller code/circuitry size to implement a Feistel cipher. Early block ciphers
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a) A Feistel Cipher b) A SPN Cipher

Figure 2.1: Two General Design Methods to Construct a Block Cipher
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were mainly designed based on the Feistel Network’s principle. This includes a

number of block ciphers specified by ISO, such as Camellia (Aoki et al., 2001),

CAST-128 (Adams, 1997), MISTY1 (Matsui, 1997), SEED (KISA, 1998) and

Triple DES (ISO, 2010).

• Substitution-permutation-network: Advanced Encryption Standard (AES) (NIST,

2001) proposed by Rijmen and Daeman is a de facto cipher designed based on

substitution-permutation-network. An SPN cipher first exclusive-ored the plain-

text with a subkey for the purpose of pre-whitening. Similar to a Feistel cipher,

a round function f will then be applied to the data for r rounds. In each round

function f , the data is fed into the substitution layer and permutation layer se-

quentially. The E algorithm differs from the D algorithm where the inverses of

the substitution layer and permutation layer must be designed in order to decrypt

the ciphertext to the right plaintext. The main advantage of a SPN cipher is that

all the bits of the data is changed in each round as compared to the Feistel cipher

which only changes half of the bits in each round. Besides, the inherent paral-

lelism is another clear advantage. Since all the bits of the data is changed in each

round, an SPN cipher typically consists of fewer rounds as compared to a Feistel

cipher and this leads to faster encryption. Another ISO standard for block cipher

that is constructed based on the principle of substitution-permutation-network is

HIGHT (D. Hong et al., 2006).

In order to achieve faster encryption speed, block ciphers are designed using

simple operations, such as exclusive-or operation (denoted by ⊕ or XOR), modulo

addition (denoted by �), bitwise rotation, bitwise shift operation, bit permutation and

substitution box (S-box). We denote by i× j-bit S-box as an S-box with an i-bit input

and j-bit output. If i = j, we call it an i-bit S-box for simplicity throughout this thesis.

2.1.3 Security of Block Cipher

In order to demonstrate that the designed construction is secure, designers need

to provide a security proof which ensures that such a scheme is secure under an ac-
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ceptable security model which specifies the attacker abilities. However, the priority

of a block cipher designer is to construct a block cipher that is elegant and simple to

achieve a practical encryption speed. Thus, simple operations have been utilised to

achieve such aims. To the best of our knowledge, none of the commonly-used interna-

tional standardised ciphers has been proven secure with a rigorous security proof. In

general, the design of a block cipher is ad hoc, and the designers will evaluate its secu-

rity against existing cryptanalytic methods. Block ciphers are thus always endangered

by the possibility of new cryptanalytic methods.

According to Shannon (1949), the father of information theory, a cryptographic

primitive should be designed to achieve either unconditional security or computational

security. The distinction between these two types of security is the computational

power of an attacker. A primitive is unconditionally secure if it is unbreakable even

though the attacker has unlimited computational power. On the other hand, a primi-

tive is computationally secure if it is unbreakable in reasonable time when the attacker

has limited computational power. Clearly, unconditional security is ideal for any con-

structed cryptographic primitives, but it is not practical to achieve such unconditional

security. For example, the one-time pad is unconditionally secure when the random

generated key K is as long as the plaintext. Nonetheless, it is not practical for a user to

memorise/store such a long secret key given that the plaintext encrypted is usually as

big as few gigabytes. This gives rise to the design of a cryptographic primitive which

is computationally secure.

2.1.3 (a) Classification of Cryptographic Attacks

Since computational security is our main concern, we consider an attack fea-

sible if the resources to launch this attack are reasonable. Before describing the re-

sources that quantify an attack, we first explain the hierarchy of an attacker’s goals in

descending order as follows:
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1. Total break: The attacker successfully recovers the user secret key.

2. Global deduction: The attacker successfully finds an algorithm that is function-

ally equivalent to either E (·) or D (·).

3. Local deduction: The attacker can recover the plaintext (respectively ciphertext)

corresponding to a new ciphertext (respectively plaintext).

4. Distinguishing algorithm: The attacker can effectively distinguish whether a

black box contains a block cipher with a random chosen secret key or a ran-

dom chosen permutation.

Note that a cipher cannot be treated as an ideal cipher if it is vulnerable to the

distinguishing attack. Such a non-ideal cipher is not suitable for any security appli-

cation as security proofs are constructed based on the assumption that the underlying

cipher is a random chosen permutation.

The effectiveness of an attack is judged using three metrics that indicate the

amount of available resources as follows:

1. Time: This can be considered as the most important metric. The unit of time

is measured in terms of the number of encryptions. An attack is practical under

current technology if the time complexity of such an attack is around 264 encryp-

tions. The current minimum acceptable security level is of 80-bits, namely, no

attack with a time complexity smaller than 280 encryptions should be available.

2. Memory/Storage: An attack may require extra storage (be it a hard disk or

random-access memory) to store partial/intermediate results. An attack is im-

practical when the amount of memory required is too large. Generally, it is more

difficult to launch an attack that needs higher memory complexity as compared

to time complexity. For instance, it is more practical to run an attack that re-

quires 250 encryptions as compared to an attack that requires a memory size of

250 bits.
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3. Data: Besides time and memory, an attack may require certain amount of data

to break a cryptographic primitive. The impact of an attack is limited when the

amount of data to launch such an attack is too large as it is logical to assume that

the attacker can only obtain limited data in practice.

The type of data available to an attacker is important as well. Indeed, not

all data are useful or available to the attacker. Generally, an attack can be classified

according to the different types of data needed as follows (Biryukov, 1999; Knudsen

& Robshaw, 2011; Lu, 2008):

1. Ciphertext only: This is the most realistic scenario as the attacker can only get

access to a number of ciphertexts by eavesdropping the communication chan-

nel between a sender and a receiver. The attacker is assumed to have minimal

knowledge of the plaintexts, such as the written format and language used to

generate them.

2. Known plaintext: The attacker is assumed to have access to a number of cipher-

texts and the corresponding plaintexts. This scenario is still highly realistic.

3. Chosen plaintext (respectively ciphertext): The attacker is assumed to have ac-

cess to an E (respectively D ) oracle where the attacker has the ability to gen-

erate the ciphertext (respectively plaintext) of his chosen plaintext (respectively

ciphertext).

4. Adaptive chosen plaintext (respectively ciphertext): Similar to the above cho-

sen plaintext (respectively ciphertext) scenario, the attacker is assumed to have

access to an E (respectively D ) oracle. Moreover, the attacker has the ability to

obtain the ciphertext (respectively plaintext) of his chosen plaintext (respectively

ciphertext) based on his previous queried chosen plaintext-ciphertext pairs.

In the above attacks, the different plaintexts (respectively ciphertexts) are as-

sumed to be obtained from a D (respectively E ) algorithm under a single unknown
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secret key. This assumption of the key is realistic as the user may use a same single

unknown secret key for encryption and decryption over his lifetime. A less realis-

tic assumption of the key is known as related-key assumption. Under the related-key

scenario, the attacker may obtain the plaintexts (respectively ciphertext) decrypted (re-

spectively encrypted) from a D (respectively E ) algorithm under different unknown

secret keys and the attacker knows the relationship between one or more pairs of such

unknown secret keys. Certain current real-world applications may allow for practi-

cal related-key attacks, for example, the key-exchange protocol (Kelsey, Schneier, &

Wagner, 1996).

Last but not least, to evaluate the security of any cryptographic primitives, the

attacker is assumed to have full knowledge of the construction of such cryptographic

primitives except the unknown secret key. This assumption is called the Kerckhoffs’s

principle (Kerckhoffs, 1883). This assumption is used in practice as it will definitely

raise the confidence of the public on the security of their designed primitives if no

weaknesses can be found against their design even though all details are made public.

2.1.3 (b) Cryptanalytic Methods

A cryptanalyst will play the role of an attacker to seek for weaknesses in a cryp-

tographic primitive. Even though such weaknesses may not pose a direct and practical

threat to the use of the primitive, say the time complexity exceeds 280 but smaller than

2k where the secret key K is of k-bit long, the existence of such vulnerabilities remain

interesting, especially from a theoretical point of view.

Over the last 25 years, a number of cryptanalytic methods had been developed

to evaluate the computational security of a block cipher assuming the attacker has a

bounded computational power. The methods used to break a cipher can be classified

into two categories, namely, generic attacks and cryptanalytic attacks.
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Generic Attacks

1. Exhaustive key search: Exhaustive key search is often used interchangeably with

brute-force attack. In an exhaustive key search attack, given a known plaintext-

ciphertext pair (P,C), the attacker simply tries every single possible key K′ and

check whether C′ ?
=C where C′ = EK′(P). Observe that the number of guessed

keys that survives this checks is approximately 2k−n. If k > n, more than one

key remain and thus, additional known plaintext-ciphertext pairs are needed to

filter out all the remaining wrong keys to obtain the correct key. Generally, such

a brute-force attack has a time complexity of 2k encryptions and negligible data

and memory complexities.

2. Dictionary attack: In a dictionary attack, the attacker first determines a widely

transmitted plaintext P between a sender and a receiver. Subsequently, the at-

tacker will encrypt such plaintext P under every single possible secret key. Those

generated ciphertexts are then stored in a memory lookup table along with the

corresponding guessed secret key. The generation of such a table has a time com-

plexity of 2k encryptions and a memory complexity of 2k n-bits. Even though

the complexities are large, the attacker can perform these computations offline.

These complexities are considered as pre-computation complexities. In practice,

the attacker will eavesdrop the communication channel between a sender and a

receiver to intercept the ciphertext C of the plaintext P. The obtained cipher-

text is then compared with those ciphertexts stored in the memory lookup table.

To speed up the memory access operation, those ciphertexts are often stored in

a hash table where a memory access requires O(1) operations. Obviously, the

online attack has a negligible time complexity.

3. Codebook attack: Instead of trying every possible secret key to encrypt a partic-

ular plaintext, the attacker tries to gather 2n ciphertexts of all 2n possible plain-

texts under the same secret key. A table will be created to store the relationship

between the plaintext and the ciphertext. Given a ciphertext C which is obtained

from eavesdropping the communication channel between a sender and a receiver
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(under the ciphertext-only scenario), the attacker can deduce the corresponding

plaintext from the table provided C is generated using the E algorithm under the

same secret key.

4. Birthday attack: The birthday paradox finds many applications in attacks on

block ciphers, message authentication codes and cryptographic hash functions.

The birthday attack makes use of the birthday paradox arguments to find a col-

lision that can lead to the breaking of a cryptographic scheme. For example,

given a function y = f (x) where y is i-bit long, one may find a collision such that

f (x1) = f (x2) with a non-negligible probability if he can obtain y j = f (x j) for

j = 1 to 2i/2.

5. Meet-in-the-middle attack: The meet-in-the-middle (MITM) attack was first

proposed by Diffie and Hellman (1977) to evaluate the security of multiple en-

cryptions without considering the internal structure of a single encryption. A

different secret key is used for each of the encryptions. To explain the MITM at-

tack, we give an example using a double-encryption scheme as shown in Figure

2.2. Mathematically, we can write the ciphertext C = EK2(EK1(P)).

E

K1 K2

P CE

Figure 2.2: A Double-Encryption Scheme

Given a known plaintext-ciphertext pair (P,C), the MITM attack can be applied

to the double-encryption scheme as follows. Figure 2.3 shows the graphical

illustration of the MITM attack against a double-encryption scheme.

• For each of the 2k1 k1-bit secret keys K′1, compute and store u = EK′1
(P) in

a memory lookup table along with K′1. This step has a time complexity of

2k1 encryptions and such a table has a memory complexity of 2k1 n-bits.
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• For each of the 2k2 secret keys k2-bit K′2, compute v=DK′2

(C) and compare

v with u stored in the hash table. If they match, then (K′1,K
′
2) can be the

right secret keys.

The number of possible secret key pairs (K′1,K
′
2) remaining after the above pro-

cess is 2k1+k2−n. Assume that k1 = k2 = k = n. Then 2k possible secret keys are

left. One additional plaintext-ciphertext pair is needed to filter out all the remain-

ing wrong keys except the right key using exhaustive key search approach. The

overall time complexity of such an MITM attack is around 2k +2k +2k ≈ 3 ·2k

encryptions. Even though a 2k-bit secret key is used for a double-encryption

scheme, such a scheme can only offer around k-bit security which implies that

a double-encryption scheme is as secure as a single encryption scheme while

its encryption speed is halved. Readers may refer to the papers (Bogdanov &

Rechberger, 2011; Isobe, 2011, 2013) for MITM-related attacks after combin-

ing MITM with other techniques.

K1 K2

P Cu

Backward DirectionForward Direction

?= vE D

Figure 2.3: The MITM Attack on a Double-Encryption Scheme

Cryptanalytic Attacks

Next, we present some cryptanalytic attacks focusing on those employed in

this thesis. In particular, we present a basic version of differential cryptanalysis and

its various generalisations including impossible differential, boomerang, amplified

boomerang, rectangle and related-key attacks.
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In the following, the difference between pairs of inputs, outputs and keys are

known as input difference, output difference and key difference respectively. Let Xi

and X ′i denote the intermediate values which are the inputs of each round function i.

The difference between the intermediate values is called the intermediate difference.

1. Differential attack: Differential attack was first proposed by Biham and Shamir

(1991a, 1991b) and variants of the technique had been applied to attack DES-

like ciphers and hash functions (Biham & Shamir, 1991c, 1993). This includes

DES (NBS, 1977), FEAL (Shimizu & Miyaguchi, 1988), N-Hash (Miyaguchi,

Ohta, & Iwata, 1990), Snefru (Merkle, 1990), Khafre (Merkle, 1991), REDOC-

II (Cusick & Wood, 1991), LOKI (Brown, Pieprzyk, & Seberry, 1990) and Lu-

cifier (Feistel, 1970, 1973).

The principle of differential cryptanalysis is to study how a particular

input difference can affect a particular output difference where the outputs are

obtained by encrypting the inputs under a fixed unknown secret key. The dif-

ference can be an exclusive-or operation (denoted as ⊕ or XOR) or a modular

addition difference (denoted as + or �).

A differential characteristic is a path that specifies the propagation from

a particular input difference to a particular output difference. There may exists

more than one differential characteristic with the same input and output differ-

ences but different intermediate differences. Joining all differential characteris-

tics forms a differential.

A differential (characteristic) for i consecutive rounds is commonly called

an i-round differential (characteristic) while an i-round differential (characteris-

tic) that has a probability p is called an i-round differential (characteristic) with

probability p. As stated by Lu (2008), the probability of an i-round differential

for a block cipher under a secret key K is defined as follows.

Definition 2.1. Let E be an n-bit block cipher and let K ∈ {0,1}k denote a

secret key for E . If α and β are n-bit values, then the probability of the i-round
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differential (α,β ) for EK , written as ∆α

i→ ∆β (or α
i→ β ), is defined as

PrEK
(∆α

i→ ∆β ) = Pr(EK(P)⊕EK(P⊕α) = β ).

Proposition 2.1 follows trivially from Definition 2.1.

Proposition 2.1. Let E be an n-bit block cipher, and let K ∈ {0,1}k denote a

secret key for E . For n-bit values α and β ,

PrEK
(∆α

i→ ∆β ) =
{#x|EK(x)⊕EK(x⊕α) = β ,x ∈ {0,1}n}

2n .

We usually refer to the differential (characteristic) of a block cipher without

specifying the secret key as the differential (characteristic) probability does not

depend on the secret key used for most of the existing block ciphers.

If an attacker finds a i-round differential ∆α
i→ ∆β with non-negligible

probability p, the attacker can exploit such a differential to find the right subkeys

by treating E : {0,1}n×{0,1}k→{0,1}n as a cascade of three sub-ciphers, that

is, E = Ea ◦E p ◦Eb where E p denotes the rounds for which ∆α
i→ ∆β holds,

Ea denotes the rounds before E p and Eb denotes the rounds after E p.

For each guess for the subkeys used in Ea and Eb, the counter is incre-

mented if an input difference produces a difference of α after Ea and its output

difference produces a difference of β before Eb. Thus, given a sufficient num-

ber of matching plaintext-ciphertext pairs, an attacker can deduce the correct

subkeys involved in the number of rounds before and after E p as the correct

subkeys most probably are the guessed keys that are suggested with higher fre-

quency.

Note that instead of determining the secret key via brute-force, the aim

of the attacker is to reduce it to a brute-force search of partial subkeys involved

in the number of rounds before and after E p. The complexity of the attack will

be reduced since a round function is usually not designed to be cryptographi-

cally strong. Once the subkeys in the number of rounds before and after E p
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are successfully recovered, the attacker can continue the same attack by peel-

ing off the number of rounds before and after E p. Further, from the recovered

subkeys, the attacker may be able to recover partial information of the secret

key by analysing the Key Schedule algorithm. In such a scenario, brute-force

attacks can be applied on the block cipher with the time complexity smaller than

2k encryptions.

Differential attack was a major breakthrough in the area of cryptanaly-

sis in 1990. Since then, a number of new cryptanalytic techniques inspired by

the differential attack had been introduced, including higher-order differential

cryptanalysis (Knudsen, 1995; Lai, 1994), impossible differential cryptanalysis

(Biham, Biryukov, & Shamir, 1999a; Knudsen, 1998), boomerang and rectan-

gle attacks (Biham, Dunkelman, & Keller, 2001; Kelsey, Kohno, & Schneier,

2001; Wagner, 1999), truncated differential cryptanalysis (Knudsen, 1995) and

multiple differential cryptanalysis (Blondeau & Gérard, 2011).

2. Impossible differential attack: The impossible differential attack technique was

first used by Knudsen (1998) to attack DEAL block cipher before Biham et al.

(1999a) formalised the technique and named it the impossible differential attack.

As the name implies, the main idea of impossible differential attack is to con-

struct differentials that hold with probability of zero in order to discard those

keys that lead to this impossible differential. Thus, the right key space can be

significantly reduced using the aforementioned check. Note that the impossi-

ble differential attack is opposed to the conventional differential attack (Biham

& Shamir, 1991a) where an attacker tries to seek for a differential with high

probability p.

The construction of an impossible differential can be achieved through

the miss-in-the-middle approach proposed by Biham, Biryukov, and Shamir

(1999b); that is, the attacker seeks for two differentials (characteristics) with

probability of one such that the last round of one differential coincides with the

first round of the other and the intermediate differences at this round contradict.

More precisely, suppose that an i-round differential S = ∆α
i→ ∆γ and a j-round
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differential T = ∆δ

j→ ∆β represent two differentials (characteristics) over i and

j rounds of a block cipher respectively. Further, assume that S and T satisfy the

following:

• An input difference of ∆α will terminate with a difference of ∆γ after i

rounds of cipher with probability of one, i.e., with absolute certainty.

• An output difference of ∆β will terminate with a difference of ∆δ after j

rounds of decryption with probability of one.

• There exists at least a bit in which its intermediate difference ∆γ contradicts

with that of ∆δ , that is, ∆γ 6= ∆δ .

Under the above assumptions, it is apparent that a (i+ j)-round differ-

ential (characteristic) commencing with ∆α and terminating with ∆β has a zero

chance of occurrence, that is, Pr(∆α
i+ j→ ∆β ) = 0. Throughout this thesis, we de-

note such an (i+ j)-round impossible differential (characteristic) as ∆α 6i+ j→ ∆β .

Figure 2.4 shows the construction of an impossible differential using the miss-

in-the-middle approach.

frk1

∆α

frkifrk2

frk1 frkifrk2

frki+1
frki+2

frki+j

frki+1
frki+2

frki+j

∆δ∆γ 6= ∆β

Pr(∆δ
j→ ∆β) = 1

X ′ Y ′

X Y

Pr(∆α
i→ ∆γ) = 1

Pr(∆α 6i+j→ ∆β) = 0

Figure 2.4: Impossible Differential: Miss-In-The-Middle Approach

Let E : {0,1}n×{0,1}k→{0,1}n be a cascade of three sub-ciphers, that

is, E = Ea ◦E0 ◦Eb where E0 denotes the rounds for which ∆α 6→ ∆β holds,

Ea and Eb denote the rounds before and after E0 respectively. For each guess
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for the subkeys used in Ea and Eb, if an input difference produces a difference of

α after Ea and its output difference produces a difference of β before Eb, then

this key is discarded as the right subkey will not lead to such a differential. Thus,

given a sufficient number of matching plaintext-ciphertext pairs, an attacker can

discard all the wrong subkeys involved in the number of rounds before and after

E0.

3. Boomerang attack: The boomerang attack was first proposed by Wagner (1999)

to show how differential-like attacks can be applied to break a block cipher even

when differentials with either high or low probabilities do not exist. Instead

of using a single differential on the entire cipher for differential cryptanalysis,

boomerang attack utilises two differentials on two different parts of the cipher.

As a result, the boomerang attack considers four pairs of plaintext and ciphertext,

i.e., (P,C),(P′,C′),(P∗,C∗) and (P′∗,C′∗). Let E : {0,1}n×{0,1}k→{0,1}n be

a cascade of two sub-ciphers, that is, EK = E0
K ◦E1

K where E0
K represents the

first half of the cipher and E1
K represents the last half of the cipher.

Consider the two differentials ∆α → ∆β with probability p for E0
K and

∆δ → ∆γ with probability q for the inverse of E1
K , that is, (E1

K)
−1. If the pair

(P,P∗) fulfills the differential ∆α → ∆β while the pairs (P,P′) and (P∗,P′∗)

fulfill the differential ∆δ → ∆γ , then the pair (E0
K(P

′),E0
K(P

′∗)) will satisfy the

differential ∆β → ∆α with probability p2 · q2 for the inverse of E0
K , that is,

(E0
K)
−1 (as shown in Figure 2.5(a)) since

E0
K(P

′)⊕E0
K(P

′∗) = E0
K(P)⊕E0

K(P
∗)⊕E0

K(P)⊕E0
K(P

′)⊕E0
K(P

∗)⊕

E0
K(P

′∗)

= E0
K(P)⊕E0

K(P
∗)⊕ (E1

K)
−1(C)⊕ (E1

K)
−1(C′)⊕

(E1
K)
−1(C∗)⊕ (E1

K)
−1(C′∗)

= ∆β ⊕∆γ⊕∆γ = ∆β . (2.1)

Observe that if one sets the three differentials properly, then the last dif-

ferential will be fulfilled accordingly. This is the reason why Wagner named his
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attack as the boomerang attack: when you send it properly, it always comes back

to you. Such a correct quartet is usually called a boomerang distinguisher.

To launch a boomerang attack, the attacker first collects N pairs of plain-

texts (P,P∗) where P∗=P⊕∆α and obtain the corresponding ciphertexts (C,C∗)

under a same secret key K. Subsequently, the attacker computes C′ = C⊕∆δ

and C′∗ = C∗⊕∆δ . Lastly, the attacker requests for the plaintexts (P′,P′∗). It

follows that N · p2q2 right quartets can be obtained.

However, for a randomly chosen function (instead of a block cipher E ),

the expected number of right quartets that fulfills P′⊕P′∗=∆α is approximately

N ·2−n. Thus, if p ·q > 2−
n
2 , the boomerang distinguisher can efficiently distin-

guish between a block cipher E and a randomly chosen function given a suffi-

cient number of adaptive chosen plaintexts and ciphertexts.

4. Amplified boomerang attack: To relax the requirement of adaptive chosen plain-

text and ciphertext queries in a boomerang attack, Kelsey et al. (2001) introduced

a variant of boomerang attack called an amplified boomerang attack. By making

use of an amplified boomerang distinguisher shown in Figure 2.5(b), an ampli-

fied boomerang attack only requires chosen plaintext queries.

Just as the boomerang distinguisher, let E : {0,1}n×{0,1}k → {0,1}n

be a cascade of two sub-ciphers, that is, EK = E0
K ◦E1

K where E0
K represents

the first half of the cipher and E1
K represents the last half of the cipher. Consider

the two differentials ∆α → ∆β with probability p for E0
K and ∆γ → ∆δ with

probability q for E1
K . If the pairs (P,P∗) and (P′,P′∗) fulfill the differential

∆α → ∆β , then the pairs (E0
K(P),E

0
K(P

′)) and (E0
K(P

∗),E0
K(P

′∗))will fulfill

the differential ∆γ → ∆δ with probability 2−n · p2 · q2 for E1
K since EK(P)⊕

EK(P′) = ∆γ with probability 2−n and

E0
K(P

∗)⊕E0
K(P

′∗) = E0
K(P)⊕E0

K(P
∗)⊕E0

K(P
′)⊕E0

K(P
′∗)⊕E0

K(P)⊕

E0
K(P

′)

= ∆β ⊕∆β ⊕∆γ = ∆γ. (2.2)
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β′ = any possible value of β,

δ′ = any possible value of δ,

β′ 6= δ′.

Figure 2.5: The Boomerang, Amplified Boomerang and Rectangle Distinguishers
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However, for a randomly chosen function (instead of a block cipher E ), a

right quartet that satisfies EK(P)⊕EK(P′)=EK(P∗)⊕EK(P′∗)=∆γ is approx-

imately 2−2n. Thus, if p · q > 2−
n
2 , the amplified boomerang distinguisher can

efficiently distinguish between a block cipher E and a randomly chosen function

given a sufficient number of chosen plaintexts.

5. Rectangle attack: In order to reduce the data complexity needed in an ampli-

fied boomerang attack, Biham et al. (2001) improved the amplified boomerang

attack and named their variant as a rectangle attack. Specifically, the rectan-

gle distinguisher allows ∆β to take any possible value of ∆β ′ and ∆δ to take

any possible value of ∆δ ′ as long as ∆β ′ 6= ∆δ ′ as shown in Figure 2.5(c).

Thus, a right quartet will be formed with the probability of 2−n · p̂2 · q̂2 where

p̂ = (∑∆β ′ Pr2
E0

K
(∆α → ∆β ′))

1
2 and q̂ = (∑∆γ ′ Pr2

E1
K
(∆γ ′ → ∆δ ))

1
2 . Note that

p̂ ≥ p and q̂ ≥ q. Thus, a smaller amount of data is needed to form a right

quartet.

6. Related-key attacks: Related-key cryptanalysis was independently introduced

by Knudsen (1993) and Biham (1994). The principle of related-key cryptanal-

ysis is to study how a particular input difference can affect a particular output

difference where the outputs are obtained by encrypting the inputs under two

different unknown secret keys with a known particular difference. Similar to

differential cryptanalysis, the difference can be an exclusive-or operation or a

modular addition difference.

A related-key differential characteristic is a path that specifies the propa-

gation from a particular input difference to a particular output difference under

two different unknown secret keys. Once again, it is likely that more than one

related-key differential characteristic with the same input and output differences

but different intermediate differences exist. Joining all related-key differential

characteristics forms a related-key differential. As stated by Lu (2008), the

probability of an i-round related-key differential for a block cipher under two

different unknown secret keys (K,K′) is defined in a similar way as a differen-

tial characteristic under a fixed unknown secret key.
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On the other hand, a related-key amplified boomerang attack was intro-

duced by Kim, Kim, Hong, Lee, and Hong (2004) by combining the techniques

of amplified boomerang and related-key attacks. Such related-key amplified

boomerang attacks (Biham, Dunkelman, & Keller, 2005b; S. Hong, Kim, Lee,

& Preneel, 2005; Kim, Hong, & Preneel, 2007; Kim, Kim, Lee, Lim, & Song,

2005; Lu, 2009; Lu & Kim, 2008; Lu, Kim, Keller, & Dunkelman, 2006; Lu,

Lee, & Kim, 2006) were then used to attack AES, KASUMI, XTEA, SHACAL-

1 and SHACAL-2.In addition, Biham, Dunkelman, and Keller (2005a) inde-

pendently introduced the related-key rectangle attack and both results (Kim et

al., 2004; Biham et al., 2005a) had been combined to result in a more detailed

related-key rectangle attack (Kim et al., 2012).

Let E : {0,1}n×{0,1}k→ {0,1}n be a cascade of two sub-ciphers, that

is, EK = E0
K ◦E1

K where E0
K represents the first half of the cipher and E1

K repre-

sents the last half of the cipher. A typical related-key rectangle distinguisher in-

volves four related-keys KA,KB,KC and KD which satisfy KA⊕KB = KC⊕KD =

∆K0 and KA⊕KC = KB⊕KD = ∆K1 where ∆K0 and ∆K1 are two known dif-

ferences. Instead of using two differentials in a rectangle attack, a related-key

rectangle attack uses four related-key differentials shown in Figure 2.6 as fol-

lows:

• All the possible related-key differentials (∆α → ∆β ) for E0 are under the

related-keys KA and KB

• All the possible related-key differentials (∆α → ∆β ) for E0 are under the

related-keys KC and KD

• All the possible related-key differentials (∆γ → ∆δ ) for E1 are under the

related-keys KA and KB

• All the possible related-key differentials (∆γ → ∆δ ) for E1 are under the

related-keys KC and KD

If the pairs (P,P∗ = P⊕∆α) and (P′,P′∗ = P′⊕α) fulfill the following

differentials:

• E0
KA
(P)⊕E0

KB
(P∗) = E0

KC
(P′)⊕E0

KD
(P′∗) = ∆β ,
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Figure 2.6: The Related-Key Amplified Boomerang Distinguisher

• E0
KA
(P)⊕E0

KC
(P′) = ∆γ ,

• EKA(P)⊕EKC(P
′) = EKB(P

∗)⊕EKD(P
′∗) = ∆δ ,

where ∆β 6= ∆γ , then the pairs (E0
KB
(P∗),E0

KD
(P′∗))will fulfill the differential

(∆γ → ∆δ ) with probability 2−n · p2 · q2 for E1
K since E0

KA
(P)⊕E0

KC
(P′) = ∆γ

with probability 2−n and

E0
KB
(P∗)⊕E0

KD
(P′∗) = E0

KA
(P)⊕E0

KB
(P∗)⊕E0

KC
(P′)⊕E0

KD
(P′∗)⊕E0

KA
(P)⊕

E0
Kc
(P′)

= ∆β ⊕∆β ⊕∆γ = ∆γ. (2.3)

Note that p=PrE0
KA

,E0
KB
(∆α→∆β )=PrE0

KC
,E0

KD
(∆α→∆β ) and q=PrE1

KA
,E1

KC

(∆γ → ∆δ ) = PrE1
KB

,E1
KD
(∆γ → ∆δ ).

However, for a randomly chosen function (instead of a block cipher E ),

a right quartet that fulfills the above related-key differentials is approximately

2−2n. Thus, if p ·q > 2−
n
2 , the related-key rectangle distinguisher can efficiently

distinguish between a block cipher E and a randomly chosen function given a
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sufficient number of chosen plaintext queries. If ∆K0 = 0 or ∆K1 = 0, then the

related-key rectangle distinguisher will involve two related-keys only.

Note that in addition to those assumptions (Lai, Massey, & Murphy,

1991) used in differential cryptanalysis (Biham & Shamir, 1991b), the related-

key amplified boomerang attack requires another assumption about indepen-

dence, and we refer the reader to (Murphy, 2011; Kim et al., 2012) for a more

formal discussion of the assumptions as well as the attack technique. These

assumptions result in cases where the probability of a related-key amplified

boomerang distinguisher may be overestimated or underestimated, and similarly

for the success probability of the attack. Nonetheless, it seems reasonable to

consider the worst case assumption from the user point of view. An application

of such an attack was proposed by Dunkelman, Keller, and Shamir (2010) to

break the full KASUMI cipher with a practical complexity, and its validity was

experimentally verified.

7. Weak keys attack: According to Handschuh and Preneel (2008), a key is known

as a weak key if the following two conditions are met:

• Under this key, the algorithm works in an unexpected manner.

• It is relatively easy for the attacker to test for the existence of this key.

A class of weak keys is then called a weak key class if all the keys in this class

result in a similar behaviour. In addition, it should typically require much lower

time complexities as compared to the number of keys in the class for an attacker

to test if a particular key lies in the class. The use of a block cipher is limited if

the block cipher possesses a high ratio of weak keys especially when the cipher

is used in a setting which requires the change of keys frequently.

2.2 Applications of Block Cipher

2.2.1 Message Authentication Code

Message authentication codes (MACs) can be viewed as the symmetric key

equivalent of digital signatures. Essentially, MAC is a symmetric key cryptographic
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scheme that serves to authenticate both the source of a message and its integrity. It is

widely used in the mobile, wireless and data communication networks due to its high

efficiency.

At present, there exist several approaches to design a MAC scheme. In partic-

ular, MACs can be constructed based on cryptographic hash functions (e.g., HMAC

(Bellare, Canetti, & Krawczyk, 1996)), block ciphers (e.g., CBC-MAC (ISO, 1999),

XCBC (Black & Rogaway, 2000), TMAC (Kurosawa & Iwata, 2003), OMAC (Iwata

& Kurosawa, 2003)) or even universal hash functions (e.g., UMAC (Black, Halevi,

Krawczyk, Krovetz, & Rogaway, 1996) and MMH (Halevi & Krawczyk, 1997)).

Among these MAC schemes, CBC-MAC and HMAC are the most popular. However,

these two schemes share a common characteristic of being inherently sequential where

one can only process the i-th message block after all the previous message blocks have

been processed.

A MAC algorithm processes a message M with an arbitrary length to generate

an τ-bit tag TM under the control of a k-bit secret key K. To be precise, a MAC

algorithm (Handschuh & Preneel, 2008) consists of the following three algorithms:

1. A key generation algorithm, KeyGen : A randomised algorithm that generates

a k-bit secret key K ∈K .

2. A tag generation algorithm, Tag : An algorithm which takes the inputs a mes-

sage M ∈M and a secret key K to generate a τ-bit tag TM ∈T .

3. A tag verification algorithm, Verify : An algorithm which takes the inputs a

message M, a tag TM and a secret key K to generate an answer true or false (1/0).

We consider the standard model for the security of a MAC in the presence of a

chosen message attack, in which an attacker is given access to the tag generation oracle

and tag verification oracle. The attacker can query any tag for any messages he chooses

using the tag generation oracle. At the same time, he can submit a tag-message pair to
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the tag verification oracle for verification purpose as well. Such queries are termed as

tagging queries and verification queries respectively. The attacker is assumed to win

the game if he can forge a tag TM for a new message M that had not been queried by

the tag generation oracle. Such a pair (M,TM) is called a forgery.

In the standard model of evaluating MAC security, there are two main types

of attacks on MACs: key recovery attack and forgery attack (Jia, Wang, Yuan, & Xu,

2009). For the key recovery attack, an attacker tries to recover the secret key K from a

number of tags. Obviously, a successful key recovery attack leads to the construction

of an arbitrary number of forgeries. Ideally, any attack following key recovery requires

about 2k operations. On the other hand, a forgery attack (without the knowledge of K)

can be divided into the following three types:

1. Existential forgery: An attacker is able to get a corresponding tag for a message

M which has not been generated by the user. Here, the message M may not have

any particular meaning.

2. Selective forgery: An attacker is able to determine the tag for a message of his

choice prior to the attack without querying this message with the tag generation

oracle.

3. Universal forgery: An attacker is able to find a tag for any message without

querying it with the tag generation oracle. It is obvious that this attack is more

powerful than the above two attacks.

In this thesis, we are primarily concerned with the existential forgery attack

and this leads us to the following notion of security called existential unforgeability

under chosen message attack against MACs (Dodis, Kiltz, Pietrzak, & Wichs, 2012).

We briefly describe this notion and readers can refer to Dodis et al. (2012) for more

details. However, we ignore the verification oracle (chosen verification query) in the

following model since our attacks do not involve any verification query.
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Existential unforgeability: Consider a MAC: K ×M → T . The attacker can

make queries to the oracle, namely Tag K(·). Tag K(·) is an oracle that allows the

attacker to obtain tags of messages of his choice. We name Tag K(·) the tagging oracle

and queries to Tag K(·) the tagging queries.

The query complexity includes the total number of queries made by the at-

tacker, q, the total number of message blocks in all q queries, σ = ∑
q
i=1 li ( li denotes

the number of message blocks of i-th query), and the maximum number of message

blocks of the longest query made by the attacker, l = max li for 1≤ i≤ q.

The security game proceeds as follows:

1. The challenger runs KeyGen to select a secret key K randomly.

2. Query Phase: The attacker A is given access to the oracle Tag K(·). For 1≤ i≤
q, the challenger returns Tag K(Mi) = TMi for a tagging query. The queries are

adaptive where A can view the response of the previous queries before sending

the next query.

3. Forgery Attempt: The attacker A generates a forgery TM′ on M′.

An attacker wins the game if

• Verify K(M′,TM′) = 1 and

• the attacker had not queried Tag K(·) with the message M′.

Remark (Jia et al., 2009): An attack is considered as an almost universal forgery attack

when an attacker is able to forge the tag for almost all the messages.
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2.2.2 Authenticated Encryption/Mode of Operation

An authenticated encryption scheme (Bellare & Namprempre, 2008; Black,

2005) is a symmetric encryption scheme to provide both confidentiality and authentic-

ity. An authenticated encryption scheme consists of the following three algorithms:

1. A key generation algorithm, KeyGen : A randomised algorithm that generates

a k-bit secret key K.

2. An encryption algorithm, Enc : An algorithm which takes the inputs a plaintext

P, an initial vector IV (also known as nonce), an optional authenticated data A

and a secret key K to generate a ciphertext C and a τ-bit tag T .

3. A decryption algorithm, Dec : An algorithm which takes the inputs a ciphertext

C, an initial vector IV , an optional authenticated data A, a tag T and a secret key

K to return the plaintext P or the specific symbol FAIL.

In the standard model of evaluating authenticated encryption security (Bellare

& Namprempre, 2000, 2008; Rogaway, 2002), we consider the security notion for au-

thenticated encryption regarding authenticity only (excludes the notion of privacy as

we only deal with the security of authenticated encryption on authenticity in this the-

sis). For authenticity, the attacker A is given access to both encryption and decryption

oracles. The encryption oracle takes (P, IV,A) as inputs and returns (C,T ). On the

other hand, the decryption oracle takes (C, IV,A,T ) as inputs and returns P or FAIL.

A is free to issue any query to these two oracles and the query complexity includes

the number of queries, the total length of queries and the maximum length of queries.

There are differences between the standard models proposed by Bellare and

Namprempre (2000, 2008), Rogaway (2002) and McGrew and Viega (2005). McGrew

and Viega (2005) assumed that A is nonce-respecting where A does not make two

queries with the same nonce/IV to the same oracle (though he is free to submit a value

to both oracles). However, it is usually acceptable that A is forbidden to reuse nonce
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in the encryption oracle, but not the decryption oracle. This is the notion proposed by

Bellare and Namprempre (2000, 2008) and Rogaway (2002). For ease of understand-

ing, the assumptions made in each of the attacks presented in this thesis will be listed

down in the related chapters only.

2.2.3 Image Encryption

Due to the fast development of internet and network technology, multimedia

data (i.e., image and video) has been transmitted between users more frequently and

in vast proportions. In certain applications, images sent over the internet or any com-

munication channel must be protected from being captured by any unauthorized users.

For example, cable TV providers, online personal photograph albums, medical images

and sensitive military images. Thus, image encryption is a crucial issue in modern

times as information exchange continues to proliferate.

Image encryption was introduced to encrypt a plain image P to an encrypted

image C under the control of a secret key K. Without a proper secret key, any unautho-

rised users are not able to recover the plain image even if he can obtain the encrypted

image by any means. General cryptographic primitives play an important role in pro-

viding confidentiality to images, such as block ciphers, stream ciphers and public key

cryptographic schemes. However, different methods had been proposed to encrypt im-

ages in the literature. For instance, due to the statistical properties of chaotic systems,

chaos theory had been used extensively in proposing image encryption schemes.

Due to the strong correlation among pixels in a plain image, block ciphers (un-

der electronic codebook mode) are not suitable for image encryption. Conceptually,

an image encryption algorithm is very similar to a block cipher as a weak round func-

tion f is applied for a number of rounds to encrypt a plain image P into an encrypted

image C using the E algorithm under subkeys that are derived from a secret key using

the Key Schedule algorithm. Even though most of the image encryption algorithms

do not specifically describe their Key Schedule algorithms explicitly as compared

to block ciphers, an image encryption algorithm can similarly be seen to comprise of
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three different algorithms, i.e., Key Schedule , E and D . However, even though an

image encryption provides confidentiality, the image encryption schemes are not anal-

ysed based on constructive cryptographic approaches. In this thesis, we analyse the

security of image encryption schemes from cryptographic perspectives, i.e., security

requirements of a block cipher.

2.3 Notation

Throughout this thesis, the elements of the finite field GF(2n) will be repre-

sented either by their polynomial representation or by the corresponding n-bit binary

string of coefficients. Here, we fix a basis 1,x, . . . ,xn−1 for the vector space GF(2n)

over GF(2). A difference with prefix 0x is in hexadecimal (base 16) notation and a

difference without prefix 0x is in binary (base 2) notation. In this thesis, the following

notations are adopted.

• ⊕: Bitwise logical exclusive-or (XOR) of two bit strings of the same length.

• & or ∩: Bitwise logical AND of two bit strings of the same length.

• ∪: Bitwise logical AND of two bit strings of the same length.

• �: Addition modulo 232.

• �: Subtraction modulo 232.

• ·: Multiplication in a finite field.

• ||: Bit string concatenation.

• ≪: Left rotation of a bit string.

• ≫: Right rotation of a bit string.

• bxc: The largest integer that is less than or equal to x.

• dxe: The smallest integer that is greater than or equal to x.

• |x|: The bitlength of bit string x.
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• |x|8: The byte length of bit string x.

• 0i: The bit string that consists of i ‘0’ bits.

• ◦: Functional composition. When composing functions X and Y, Y◦X denotes

the function obtained by first applying X and then applying Y.

• e: The base of the natural logarithm (e = 2.71828 · · · ).

• ?: An arbitrary value of some length, where two values represented by the ?

symbol may be different.

• E K(x): The encryption of bit string x using a block cipher E under the control

of a secret key K.

• MSBi(x): The bit string consisting of the i left-most bits of the bit string x.

• [x]i: The binary representation of the nonnegative integer x as a string of i bits,

where x < 2i.

• pad(i): Given a bit string i and |i|< n, the padding of i is the bit string i10n−|i|−1.

If |i|= n, pad(i) = i. Note that n is the block size of a block cipher E .

• ntz(i): The number of trailing 0-bits in the bit string i.

• τ: The tag length is an integer τ ∈ [1,n] where n is the block size of a block

cipher E .

For ease of reading and understanding, we may repeat the definition of the

notation throughout the thesis.
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CHAPTER 3

WEAK KEYS OF THE FULL MISTY1 BLOCK CIPHER FOR

RELATED-KEY CRYPTANALYSIS

The MISTY1 block cipher has a 64-bit block length, a 128-bit secret key and

a recommended number of 8 rounds. It is a Japanese CRYPTREC-recommended e-

government cipher, a European NESSIE selected cipher and an ISO standard. Despite

considerable cryptanalytic efforts, there has been no published cryptanalytic attack on

the full MISTY1 cipher algorithm until 2013. In this chapter, we present related-key

differential and related-key amplified boomerang attacks on the full MISTY1 under

certain weak key assumptions. Specifically, we present the following attacks:

• 2103.57 weak keys and a related-key differential attack on the full MISTY1 with

a data complexity of 261 chosen ciphertexts and a time complexity of 290.93

encryptions, and

• 292 weak keys and a related-key amplified boomerang attack on the full MISTY1

with a data complexity of 260.5 chosen plaintexts and a time complexity of 287.33

encryptions.

Our results are the first to exhibit a cryptographic weakness in the full MISTY1 cipher

(when used with the recommended 8 rounds) even though that Todo (2015) found the

first integral attack on full MISTY1 under single secret key scenario. More impor-

tantly, we show that the MISTY1 cipher is distinguishable from an ideal cipher and

thus cannot be regarded as an ideal cipher.
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3.1 Introduction

The MISTY1 block cipher (Matsui, 1997) has a 64-bit block length, a 128-

bit secret key and a variable number of rounds; the officially recommended number

of rounds is 8. We consider the version of MISTY1 that uses the recommended 8

rounds in this chapter, which is also the most widely discussed version so far. MISTY1

has a Feistel structure with a total of ten key-dependent logical functions FL — two

FL functions at the beginning plus two inserted after every two rounds. It became a

CRYPTREC e-government recommended cipher (CRYPTREC, 2003) and a NESSIE

selected block cipher (NESSIE, 2004). In addition, MISTY1 was adopted as an ISO

standard (ISO, 2005, 2010).

MISTY1 has attracted extensive attention since its publication and its secu-

rity has been analysed against a wide range of cryptanalytic techniques (Babbage &

Frisch, 2000; Chen & Dai, 2011; Dai, 2012; Dai & Chen, 2012; Kühn, 2001, 2002;

E. Lee et al., 2008; Lu, Kim, Keller, & Dunkelman, 2008; Sun & Lai, 2009; Tanaka,

Hatano, Sugio, & Kaneko, 2007; Tsunoo, Saito, Nakashima, & Shigeri, 2009a, 2009b,

2010, 2012). In summary, the main cryptanalytic results on MISTY1 published to

date are as follows. Dunkelman and Keller (2008) described impossible differential

attacks (Knudsen, 1998; Biham et al., 1999a) on 6-round MISTY1 with FL func-

tions and 7-round MISTY1 without FL functions. Subsequently, E. Lee et al. (2008)

gave a related-key amplified boomerang attack (Kim et al., 2004; Biham et al., 2005a;

S. Hong et al., 2005) on 7-round MISTY1 with FL functions under a class of 273

weak keys1 and Tsunoo et al. (2009b) presented a higher-order differential attack (Lai,

1994; Knudsen, 1995) on 6 and 7-round MISTY1 with FL functions (without mak-

ing a weak key assumption). Then, Sun and Lai (2009) presented an integral attack

on 6-round MISTY1 with FL functions, building on Knudsen and Wagner’s inte-

gral attack (Knudsen & Wagner, 2002) on 5-round MISTY1. Following the work

done by E. Lee et al., Chen and Dai (2011) presented a 7-round related-key ampli-

fied boomerang distinguisher with probability 2−118 under a class of 290 weak keys

1A class of weak keys is defined as a class of keys under which the concerned cipher is more
vulnerable to be attacked.
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and gave a related-key amplified boomerang attack on the 8-round MISTY1 with only

the first 8 FL functions. Furthermore, they described a 7-round related-key differen-

tial with probability 2−58 under a class of 2102.57 weak keys and finally presented a

related-key differential attack on the 8-round MISTY1 with only the last 8 FL func-

tions (Dai & Chen, 2012). Later, Jia and Li (2012) improved the results obtained by

Dunkelman and Keller (2008) and successfully extended impossible differential at-

tack on 7-round MISTY1 without first two FL functions. So far, there does not exist

any published (non-generic) cryptanalytic attack on the full 8 rounds of MISTY1 un-

til 2012. In CRYPTO 2015, Todo (2015) constructed a new integral characteristic by

using the propagation characteristic of the division property and successfully recov-

ered the secret key of the full MISTY1 by exploiting the new integral characteristic.

The proposed integral attack on full MISTY1 is a theoretical attack since almost all

plaintexts are needed to launch such integral attack.

Related-key cryptanalysis (Biham, 1994; Knudsen, 1993) assumes that the at-

tacker knows the relationship between one or more pairs of unknown keys; certain

current real-world applications may allow for practical related-key attacks, for ex-

ample, key-exchange protocols (Kelsey et al., 1996). Related-key differential crypt-

analysis (Kelsey et al., 1996) takes advantage of how a particular input difference

can affect a particular output difference where the outputs are obtained by encrypting

the inputs under two different secret keys with a known particular difference. The

related-key amplified boomerang attack (Biham et al., 2005a; S. Hong et al., 2005;

Kim et al., 2004) is a combination of related-key cryptanalysis and the amplified

boomerang attack (Kelsey et al., 2001). The amplified boomerang attack is a vari-

ant of the boomerang attack (Wagner, 1999) that is based on differential cryptanaly-

sis (Biham & Shamir, 1991a). Remarkably, the related-key differential cryptanalysis

technique was used by Biryukov, Khovratovich, and Nikolić (2009) to yield the first

cryptanalytic attack on the full version of the AES block cipher (NIST, 2001) with

256 key bits under certain weak key assumptions. Furthermore, the related-key am-

plified boomerang attack technique was used to yield the first cryptanalytic attacks

on the full versions of both AES with 192 and 256 key bits and KASUMI (3GPP,
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2001) which is a variant of MISTY1, without making any weak key assumption, by

Biham et al. (2005b), Biryukov and Khovratovich (2009) and Dunkelman et al. (2010)

respectively.

In this chapter, we show for the very first time that the full MISTY1 cipher

can be distinguished from an ideal cipher (in the related-key model) mainly from a

theoretical perspective2. Building on the work done by Chen and Dai (2011) and

Dai and Chen (2012), we present related-key differential and amplified boomerang

attacks on the full MISTY1 cipher under certain weak key assumptions. First, we

show that Dai and Chen’s 7-round related-key differential can be used to break the

full MISTY1 under the class of 2102.57 weak keys and observe that there exists also a

different class of 2102.57 weak keys under which similar results hold. Finally, we find

that under the class of 290 weak keys described by Chen and Dai (2011), Chen and

Dai’s 7-round related-key amplified boomerang distinguisher actually has a probability

of 2−116, instead of 2−118, which can be used to attack the full MISTY1; and similar

results hold for three other classes of weak keys of the same size. Table 3.1 summarises

our results as well as the previously published main cryptanalytic results on MISTY1,

where CP and CC refer respectively to the numbers of chosen plaintexts and chosen

ciphertexts while Enc. refers to the required number of encryption operations of the

relevant version of MISTY1.

Organisation. The remainder of the chapter is organised as follows. In the next

section, we describe the notation and the MISTY1 cipher. In Sections 3.3 and 3.4,

we review Chen and Dai’s cryptanalytic results and give our differential and amplified

boomerang cryptanalytic results on MISTY1, respectively. Section 3.5 concludes this

chapter.

2Our results on full MISTY1 were dated in 2013 and no attacks had been found on full MISTY1
under single secret key scenario until 2015 by Todo
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3.2 The MISTY1 Block Cipher

MISTY1 (Matsui, 1997) employs a complex Feistel structure with a 64-bit

block length and a 128-bit secret key. It uses the following three functions FL,FI, FO,

which are respectively depicted in Figure 3.1-(a), Figure 3.1-(b) and Figure 3.1-(c)

with their respective subkeys to be described below.

• FL : {0,1}32×{0,1}32 → {0,1}32 is a key-dependent linear function. If X =

(XL||XR) is a 32-bit block of two 16-bit words XL,XR, and Y = (Y1||Y2) is a 32-

bit block of two 16-bit words Y1,Y2, then output FL(X ,Y ) = (XL⊕ ((XR⊕ (XL∩
Y1))∪Y2),XR⊕ (XL∩Y1)).

• FI : {0,1}16×{0,1}16→{0,1}16 is a non-linear function. If X = (XL||XR) and

Y = (Y1||Y2) are 16-bit blocks, (here XL,Y2 are 9 bits long and XR,Y1 are 7 bits

long), then FI(X ,Y ) is computed as follows, where XL0,XR0, · · · , XL3,XR3 are

9 or 7-bit variables, S9 is a 9× 9-bit bijective S-box, S7 is a 7× 7-bit bijective

S-box, the function Extnd extends from 7 bits to 9 bits by concatenating two

zeros on the left side and the function Trunc truncates two bits from the left side.

1) Set XL0 = XL and XR0 = XR.

2) Compute XL1 = XR0 and XR1 = S9(XL0)⊕Extnd(XR0).

3) Compute XL2 = XR1⊕Y2 and XR2 = S7(XL1)⊕Trun(XR1)⊕Y1.

4) Compute XL3 = XR2 and XR3 = S9(XL2)⊕Extnd(XR2).

5) Output FI(X ,Y ) = (XL3||XR3).

• FO : {0,1}32×{0,1}64×{0,1}48 → {0,1}32 is a non-linear function. If X =

(XL||XR) is a 32-bit block of two 16-bit words XL,XR, Y = (Y1||Y2||Y3||Y4) is a

64-bit block of four 16-bit words Y1,Y2,Y3,Y4 and Z = (Z1||Z2||Z3) is a 48-bit

block of three 16-bit words Z1,Z2,Z3, then FO(X ,Y,Z) is defined as follows,

where XL0,XR0, · · · ,XL3, XR3 are 16-bit variables.

1) Set XL0 = XL and XR0 = XR.
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2) For j = 1,2,3, compute XL j = XR j−1 and XR j = FI(XL j−1⊕Yj,Z j)⊕

XR j−1.

3) Output FO(X ,Y,Z) = (XL3⊕Y4)||XR3.

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KIij2

KIij1

⊕
⊕

∩
∪

KLi1

KLi2

⊕ ⊕

KOi1

FIi1 ⊕ ⊕

KOi2

FIi2 ⊕ ⊕

KOi3

FIi3 ⊕

KOi4

(a) : FLi (b) : FIij

(c) : FOi

Extnd Trunc Extnd

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

FL9 FL10

...

(d) : MISTY1

Figure 3.1: MISTY1 and Its Components

MISTY1 uses a total of ten 32-bit subkeys KL1,KL2, · · · ,KL10 for the FL func-

tions, twenty-four 16-bit subkeys KIi j for the FI functions and thirty-two 16-bit sub-

keys KOil for the FO functions, (1 6 i 6 8,1 6 j 6 3,1 6 l 6 4), all derived from a

128-bit secret key K. The key schedule is as follows:

1) Represent K as eight 16-bit words K = (K1,K2, · · · ,K8).

2) Generate K′ as eight 16-bit words K′=(K′1,K
′
2, · · · ,K′8) where K′i =FI(Ki,Ki+1),

for i = 1,2, · · · ,8, where the subscript i+1 is reduced by 8 when it is larger than

8, (similarly for some subkeys in the following step).

3) Compute the subkeys as follows:

• KOi1 = Ki,KOi2 = Ki+2,KOi3 = Ki+7,KOi4 = Ki+4,
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• KIi1 = K′i+5,KIi2 = K′i+1,KIi3 = K′i+3,

• KLi = K i+1
2
||K′i+1

2 +6
, for i = 1,3,5,7,9;otherwise,KLi = K′i

2+2
||K i

2+4.

MISTY1 takes a 64-bit plaintext P as input and has a variable number of

rounds; the officially recommended number of rounds is 8. The encryption algo-

rithm E shown in Figure 3.1-(d) works as follows, where L0,R0, · · · ,Li,Ri are 32-

bit variables, KO j = (KO j1||KO j2||KO j3||KO j4) and KI j = (KI j1||KI j2||KI j3), ( j =

1,2, · · · ,8).

1) Set (L0||R0) = (PL||PR).

2) For i = 1,3,5,7, compute:

• Ri = FL(Li−1,KLi), Li = FL(Ri−1,KLi+1)⊕FO(Ri,KOi,KIi),

• Ri+1 = Li, Li+1 = Ri⊕FO(Li,KOi+1,KIi+1).

3) Output ciphertext C = FL(R8,KL10)||FL(L8,KL9).

We refer to the 8 rounds in the above description as Rounds 1,2, · · · ,8, respec-

tively.

3.3 A Related-Key Differential Attack of the Full MISTY1 under 2103.57 Weak

Keys

In this section, we first review Dai and Chen’s class of 2102.57 weak keys and

their 7-round related-key differential characteristic with probability 2−58 under the

class of weak keys. We then devise a related-key differential attack on the full MISTY1

when the secret key used is a weak key from the class of 2102.57 weak keys. Finally,

we describe another class of 2102.57 weak keys under which similar results hold.
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3.3.1 A Class of 2102.57 Weak Keys Owing to Dai and Chen

First, we define three constants which will be used subsequently: a 7-bit con-

stant a = 0010000, a 16-bit constant b = 0010000000010000 and another 16-bit con-

stant c = 0010000000000000 where all are represented in binary notation. Observe

that b = (a||02||a) and c = (a||09), where 0i represents a binary string of i zeros and so

on for i≥ 2.

Let KA and KB be two 128-bit secret keys defined as follows:

• KA = (K1,K2,K3,K4,K5,K6,K7,K8),

• KB = (K1,K2,K3,K4,K5,K∗6 ,K7,K8).

By the key schedule of MISTY1, we can get the corresponding eight 16-bit words for

KA and KB which are denoted as follows:

• K′A = (K′1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

• K′B = (K′1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K′∗6 ,K′7,K

′
8).

Then, the class of weak keys is defined to be the set of all possible values of

(KA,KB) that satisfy the following 12 conditions 3, where Ki, j denotes the j-th bit of Ki.

For instance, K6,12 denotes the 12-th bit of K6 and similar for K7,3,K7,12,K8,3,K′4,3,K
′
4,12

and K′7,3.

3Conditions (3.11) and (3.12) were based on the version of Dai and Chen’s paper that we requested
from Dai in February 2012 (Dai, 2012), where they used only the first ten conditions and obtained a class
of 2105 weak keys. However, Dai and Chen had included these conditions in their formally published
post-proceedings version (Dai & Chen, 2012).
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K6⊕K∗6 = c; (3.1)

K′5⊕K′∗5 = b; (3.2)

K′6⊕K′∗6 = c; (3.3)

K6,12 = 0; (3.4)

K7,3 = 1; (3.5)

K7,12 = 0; (3.6)

K8,3 = 1; (3.7)

K′4,3 = 1; (3.8)

K′4,12 = 1; (3.9)

K′7,3 = 0; (3.10)

PrFI(·,K′2)(c→ c)> 0; (3.11)

PrFI(·,K′7)(b→ c)> 0. (3.12)

Let us now analyse the number of weak keys. First, observe that when Condi-

tion (3.1) holds, then Condition (3.2) holds with certainty.

Note that K′4 =FI(K4,K5),K′6 =FI(K6,K7) and K′∗6 =FI(K∗6 ,K7),K′7 =FI(K7,K8).

By performing a computer search, we get

• |{(K2,K3)|Condition (3.11)}|= 231;

• |{(K4,K5)|Conditions (3.2),(3.8) & (3.9)}|= 230;

• |{(K6,K7,K8)|Conditions (3.1),(3.3),(3.4),(3.5),(3.6),(3.7),(3.10) & (3.12)}|
≈ 225.57.

Note that there are 216 possible values of K1. Therefore, there are a total of

approximately 2102.57 possible values of KA satisfying Conditions (3.1)–(3.12) and thus
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there are approximately 2102.57 weak keys. Furthermore, observe that PrFI(·,K′7)(b→ c)

is 2−15 for each of the 9600 correct values of K′7, 2−14 for each of the 2432 correct

values of K′7 and 6
216 ≈ 2−13.42 for each of the 128 correct values of K′7.

3.3.2 Dai and Chen’s 7-Round Related-Key Differential

Under the class of 2102.57 weak keys (KA,KB) described in Section 3.3.1, Dai

and Chen presented the following 7-round related-key differential α
7→ β : (b||032||c)

→ (032||c||016) with probability 2−58 for Rounds 2–8. In Figure 3.2 and Figure 3.3,

we illustrate the related-key differential characteristic in detail where R4,3 denotes the

3-rd bit of R4 (the right half of the output of Round 4) and R4,12 denotes the 12-th bit

of R4.

As a result, Dai and Chen presented a related-key differential attack on 8-round

MISTY1 without the first two FL functions by conducting a key recovery on FO1 in

a way similar to the early abort technique for impossible differential cryptanalysis

introduced by Lu et al. (2008).

3.3.3 Attacking the Full MISTY1 under the Class of 2102.57 Weak Keys

We find that the 7-round related-key differential with probability 2−58 can be

used to conduct a related-key differential attack on the full MISTY1 when the secret

key used is a weak key from the above described class of 2102.57 weak keys.

3.3.3 (a) Preliminary Results

First, we have the following result.

Proposition 3.1. In the class of 2102.57 weak keys satisfying Conditions (3.1)–(3.12),

1) there are 216 possible values of each of K1, K3 and K5;

2) there are 225.57 possible values of (K6,K7,K8); in particular, there are a total

of 213.57 possible values of K′7 and for every possible such value, there are 212
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possible values of (K′6,K8);

3) there are a total of 28 possible values of K′2,8−16, 216 possible values of K′3 and

28 possible values of K′4,8−16, where K′2,8−16 denotes bits (8, · · · ,16) of K′2 and

K′4,8−16 denotes bits (8, · · · ,16) of K′4;

4) PrFI(·,∀K′7)(b→ c)≥ 2−15 and PrFI(·,∀K′2)(c→ c) = 2−15.

Next, we concentrate on the propagation of the input difference α (i.e., b||032||c)
of the 7-round differential through the preceding Round 1 which includes the FL1 and

FL2 functions under (KA,KB); see Figure 3.4.

Under (KA,KB), by the key schedule of MISTY1, we have

• ∆KO11 = ∆K1 = 0,∆KO12 = ∆K3 = 0,

• ∆KO13 = ∆K8 = 0,∆KO14 = ∆K5 = 0,

• ∆KI11 = ∆K′6 = c,

• ∆KI12 = ∆K′2 = 0,

• ∆KI13 = ∆K′4 = 0,

• ∆KL1 = ∆(K1||K′7) = 0,

• ∆KL2 = ∆(K′3||K5) = 0.

As depicted in Figure 3.4, the right half of α is (016||c), so the FI11 function

has a zero input difference. Since ∆KO11 = 0 and ∆KI11 = c, the output difference

of FI11 is b with probability of one. The input difference of the FI12 function is c,

and thus the first S9 function in FI12 has an input difference a||02 and we assume

its output difference is A ∈ {0,1}9. In addition, the S7 function in FI12 has a zero

input and output difference. The second S9 function in FI12 has an input difference

A and we assume its output difference is B ∈ {0,1}9. As a result, the FI12 function
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has an output difference X = (Trunc(A)||(B⊕ (02||Trunc(A)))). A simple computer

simulation reveals that Trunc(A) can take all 27 possible values and thus we assume

that X can take all values in {0,1}16.

Since the input difference of the FI13 function is 09||a, the first S9 function in

FI13 has a zero input difference. The S7 function in FI13 has an input difference a and

we assume its output difference is D ∈ {0,1}7, which can take only 26 possible values.

The second S9 function in FI13 has an input difference 02||a and we assume its output

difference is E ∈ {0,1}9. Consequently, the FI13 function has an output difference

Y = ((a⊕D)||(E ⊕ (02||(a⊕D)))) and it can take about 215 values in {0,1}16. We

denote the set of 215 values by Sd .

The FL1 function has an output difference (016||c), so its input difference can

only be of the form

32 bits︷ ︸︸ ︷
00?0000000000000||00?0000000000000 which will be denoted by

η = (ηL,ηR) in the following descriptions where the question marker “?” represents

an indeterminate bit. However, when the first question marker takes a zero value, the

second question marker can take only 1, that is, η has only three possible values (the

specific form depends on the values of the two subkey bits K1,3 and K′7,3). The FL2

function has an output difference (X ⊕ c)||(X ⊕Y ⊕ (09||a)), so its input difference is

indeterminate, denoted by “?” in Figure 3.4.

From the above analysis, we conclude that the subkeys KI121 and KI131 do not

affect the values of X and Y and thus they are not required when checking whether a

candidate plaintext pair generates the input difference α = (b||032||c) of the 7-round

related-key differential. Further, as K′3 =FI(K3,K4),K′4 =FI(K4,K5), K′6 =FI(K6,K7)

and K′7 = FI(K7,K8), we obtain the following result.

Proposition 3.2. Only the subkeys (K1,K′2,8−16,K3,K4,K5,K6,K7,K8) are required

when checking whether a candidate plaintext pair produces the input difference α =

(b||032||c) of the 7-round related-key differential.
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3.3.3 (b) Attack Procedure

First, we precompute two hash tables T1 and T2. Observe that from the left

halves of a pair of plaintexts, we only need (K1,K3,K′2,8−16) when computing the out-

put difference X of the FI12 function and only need (K1,K′6,K
′
7,K8,K′4,8−16) when

computing the output difference Y of the FI13 function. To generate T1 and T2, we do

the following procedure under every 32-bit value x = (xL||xR).

1) For every possible K1:

a) Compute Z = (xL∩K1)⊕ ((xL⊕ηL)∩K1)⊕ηR and proceed to the follow-

ing steps only when Z = c.

b) For every possible (K3,K′2,8−16), compute the output difference of FI12 as

X .

2) Store all satisfying (K1,K3,K′2,8−16) into Table T1 indexed by (x,η ,X).

3) For every possible K′7:

a) Compute W = ηL⊕ (((xL ∩K1)⊕ xR)∪K′7)⊕ (((xL ∩K1)⊕ xR⊕ c)∪K′7)

and proceed to the following steps only when W = 0.

b) For every possible (K′6,K8,K′4,8−16), compute the output difference of FI13

as Y .

4) Store the values of (K6,K7,K8) corresponding to all satisfying values of (K′6,K
′
7,

K8) into Table T2 indexed by (x,η ,Y,K1,K′4,8−16).

There are 216 possible values of K1, 216 possible values of K3, 28 possible

values of K′2,8−16 and 3 possible values of η . For a fixed (x,η ,X), there are 216×2−1×
216× 28× 2−16 = 223 satisfying values of (K1,K3,K′2,8−16) on average in T1. The

precomputation for T1 takes about 232×3×216×216×28 ≈ 273.59 FI computations

and T1 requires a memory of about 224×232×3×216× 16+16+8
8 ≈ 275.91 bytes. There

are 213.57 possible values of K′7, 212 possible values of (K′6,K8), 28 possible values of
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K′4,8−16 and 215 possible values of Y . For a fixed (x,η ,Y,K1,K′4,8−16), on average

there are 213.57×2−1×212×2−15 = 29.57 satisfying values of (K′6,K
′
7,K8) in T2. The

precomputation for T2 takes about 232× 3× 216× 213.57× 212× 28× 2 ≈ 284.16 FI

computations and T2 requires a memory of about 29.57×232×3×215×216×28×6≈
284.74 bytes. Note that we can use several tricks to optimise the procedure to reduce

the computational complexity for generating the two tables. However, it is negligible

compared to the computational complexity of the following online attack procedure.

We devise the following attack procedure to break the full MISTY1 when a

weak key is used.

1) Initialise zero to an array of 295.57 counters corresponding to all the 295.57 possi-

ble values of (K1,K′2,8−16, K3,K4,K5,K6,K7,K8).

2) Choose 260 ciphertext pairs (C,C∗ = C⊕ (032||c||016)). In a chosen cipher-

text attack scenario, obtain the plaintexts for the ciphertexts C,C∗ under KA,KB

respectively. We denote the plaintext for ciphertext C encrypted under KA by

P = (PLL||PLR,PRL||PRR) and the plaintext for ciphertext C∗ encrypted under

KB by P∗ = (PL∗L||PL∗R,PR∗L||PR∗R).

3) Check whether a plaintext pair (P,P∗) meets the condition (PLL||PLR)⊕ (PL∗L||
PL∗R) = η by first checking the 30 bit positions with a zero difference and then

checking the remaining two bit positions. Keep only the satisfying plaintext

pairs.

4) For every remaining plaintext pair (P,P∗), do the following sub-steps.

a) Guess a possible value of (K′3,K5) and compute (X ,Y ) such that (X ⊕
c)||(X⊕Y⊕(09||a))=FL(PRL||PRR,K′3||K5)⊕FL(PR∗L||PR∗R,K

′
3||K5). Ex-

ecute the next steps only if Y ∈Sd; otherwise, repeat this step with another

subkey guess.

b) Access Table T1 at entry (PLL||PLR,η ,X) to get the satisfying values of

(K1,K3, K′2,8−16).
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c) For each satisfying value of (K1,K3,K′2,8−16), retrieve K4 from the equation

K′3 = FI(K3,K4), compute K′4 = FI(K4,K5) and access Table T2 at entry

(PLL||PLR,η ,Y,K1,K′4,8−16) to get the satisfying values of (K6,K7,K8).

d) Increase 1 to each of the counters corresponding to the obtained values of

(K1, K′2,8−16,K3,K4,K5, K6,K7,K8).

5) For a value of (K1,K′2,8−16,K3,K4,K5,K6,K7,K8) whose counter number is equal

to or larger than 3, exhaustively search the remaining 7 key bits with two known

plaintext-ciphertext pairs. If a value of (K1,K2, · · · ,K8) is suggested, output it as

the secret key of the full MISTY1.

3.3.3 (c) Attack Complexity

The attack requires 260× 2 = 261 chosen ciphertexts. In Step 3, only 260×
2−30× 3

4 ≈ 229.58 plaintext pairs are expected to satisfy the condition and it takes about

260 memory accesses to obtain the satisfying plaintext pairs. Step 4(a) has a time

complexity of about 229.58×216×216×2 = 262.58 FL computations. In Step 4(b), for

a plaintext pair and a possible value of (K′3,K5), we obtain, on average, 223 possible

values of (K1,K3,K′2,8−16) as discussed in the precomputation phase. Owing to the

filtering condition in Step 4(a), Step 4(b) has a time complexity of about 229.58 ×
215

216 ×232×223 = 283.58 memory accesses (if conducted on a 64-bit computer). In Step

4(c), for a plaintext pair and a possible value of (K1,K3,K5,K′2,8−16,K
′
3), we obtain, on

average, 29.57 possible values of (K6,K7,K8) as discussed in the precomputation phase,

and thus Step 4(c) has a time complexity of about 228.58× 232× 223× 29.57 = 293.15

memory accesses. Step 4(d) has a time complexity of about 293.15×2= 294.15 memory

accesses where the factor “2” represents that it requires two memory accesses for a

single access to an entry whose length is between 65 and 128 bits when conducted on

a 64-bit computer.

The probability that the counter for a wrong (K1,K′2,8−16,K3,K4,K5,K6,K7,K8)

has a number larger than or equal to 3 is approximately ∑
260

i=3[
(260

i

)
· (2−64)i · (1−

2−64)260−i] ≈ 2−14.67. Thus, it is expected that there are a total of 295.57× 2−14.67 =
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280.9 wrong values of (K1,K′2,8−16,K3,K4,K5,K6,K7,K8) whose counters have a num-

ber greater than or equal to 3. Thus, it requires 280.9× 27 + 280.9× 27× 2−64 ≈ 287.9

trial encryptions to check them in Step 5. In Step 5, a wrong value of (K1,K2, · · · ,K8)

is suggested with probability 2−64×2 = 2−128, so the number of suggested values of

(K1,K2, · · · ,K8) is expected to be 287.9×2−128 = 2−40.1 which is rather low. Thus, the

time complexity of the attack is dominated by Steps 4(c), 4(d) and 5. An extremely

conservative estimate is: 16 memory accesses equal a full MISTY1 encryption in terms

of time, assuming that in every round, say Round i, the FIi1 and FIi2 functions that are

implemented in parallel are equivalent to one memory access and the subsequent FIi3

function is equivalent to another one memory access by neglecting the key schedule

algorithm and the computational complexities of other operations. Thus, one round is

equivalent to 2 memory accesses4. Therefore, the attack has a total time complexity of

about 293.15+294.15

16 +287.9 ≈ 290.93 MISTY1 encryptions.

The counter for the correct key has an expected number of 260×2−58 = 4 and

the probability that the counter for the correct key has a number at least 3 is approxi-

mately ∑
260

i=3[
(260

i

)
· (2−58)i · (1−2−58)260−i]≈ 0.76. Therefore, the related-key differ-

ential attack has a success probability of 76%. The memory complexity of the attack is

dominated by the space for the array of 295.57 counters, which is 295.57× 95.57
8 ≈ 299.2

bytes. It is worthy to note that there exist time–memory tradeoff versions to the above

attack.

3.3.4 Another Class of 2102.57 Weak Keys

In the above sub-sections, we have described a class of 2102.57 weak keys and

a related-key differential attack on the full MISTY1 under a weak key. However, we

observe that there exists another class of 2102.57 weak keys under which similar results

hold. The new weak key class is obtained by setting K′7,3 = 1, which is further classified

4The question on how many memory accesses (table lookups) are equivalent to one MISTY1 en-
cryption in terms of time depends closely on the used platform and MISTY1 implementation as well as
the storage location of the hash table. In theoretical block cipher cryptanalysis, it is usually assumed by
default that a hash table is stored in an ideal place, RAM say, like an S-box table; and it takes an almost
constant time to access an entry in a hash table, independent of the number of entries.
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into two sub-classes by the possible values of the subkey bit K1,3. This will affect only

the FL10 function in the 7-round related-key differential, but the output difference of

FL10 will be fixed once K1,3 is given, that is, the right half of the output difference

of the resulting 7-round related-key differential will be c||c when K1,3 = 1 and 016||c
when K1,3 = 0. Thus, by choosing a number of ciphertext pairs with a corresponding

difference, we can conduct a similar attack on the full MISTY1 under every sub-class

of weak keys. In total, we have 2103.57 weak keys under which a related-key differential

attack can break the full MISTY1.

3.4 A Related-Key Amplified Boomerang Attack of the Full MISTY1 under 292

Weak Keys

In this section, we first review Chen and Dai’s class of 290 weak keys and their

7-round related-key amplified boomerang distinguisher with probability 2−118. Next,

we describe a slight improvement to Chen and Dai’s 7-round related-key amplified

boomerang distinguisher which has a probability of 2−116 and then present a related-

key amplified boomerang attack on the full MISTY1 under the class of 290 weak keys.

Finally, we describe three other classes of 290 weak keys under which there exist sim-

ilar results.

3.4.1 A Class of 290 Weak Keys Owing to Chen and Dai

First, we define the same three constants a,b and c as used in Section 3.3.1,

that is, a 7-bit constant a = 0010000, a 16-bit constant b = 0010000000010000 and

another 16-bit constant c = 0010000000000000 where all are represented in binary

notation.

Let KA,KB,KC and KD be four 128-bit secret keys defined as follows:

• KA = (K1,K2,K3,K4,K5,K6,K7,K8),

• KB = (K1,K∗2 ,K3,K4,K5,K6,K7,K8),
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• KC = (K1,K2,K3,K4,K5,K∗6 ,K7,K8),

• KD = (K1,K∗2 ,K3,K4,K5,K∗6 ,K7,K8).

By the key schedule of MISTY1, we can get the corresponding eight 16-bit words for

KA,KB,KC and KD which are denoted as follows:

• K′A = (K′1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

• K′B = (K′∗1 ,K′∗2 ,K′3,K
′
4,K

′
5,K

′
6,K

′
7,K

′
8),

• K′C = (K′1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K′∗6 ,K′7,K

′
8),

• K′D = (K′∗1 ,K′∗2 ,K′3,K
′
4,K

′∗
5 ,K′∗6 ,K′7,K

′
8).

The class of weak keys is defined to be the set of all possible values of (KA,KB,

KC,KD) that satisfy the following 12 conditions where Ki, j denotes the j-th bit of Ki.

For instance, K5,3 denotes the 3-rd bit of K5 and similarly for K5,12,K′4,3,K7,3,K7,12,

and K8,3.
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K2⊕K∗2 = c; (3.13)

K6⊕K∗6 = c; (3.14)

K′1⊕K′∗1 = b; (3.15)

K′5⊕K′∗5 = b; (3.16)

K′2⊕K′∗2 = c; (3.17)

K′6⊕K′∗6 = c; (3.18)

K5,3 = 1; (3.19)

K5,12 = 0; (3.20)

K′4,3 = 0; (3.21)

K7,3 = 1; (3.22)

K7,12 = 0; (3.23)

K8,3 = 0. (3.24)

Let us now analyse the number of the weak keys. First observe that when

Condition (3.13) holds, then Condition (3.15) holds with certainty. Besides, when

Condition (3.14) holds, Condition (3.16) holds with certainty.

Note that K′2 =FI(K2,K3),K′∗2 =FI(K∗2 ,K3),K′4 =FI(K4,K5),K′6 =FI(K6,K7)

and K′∗6 = FI(K∗6 ,K7). By performing a computer search, we get

• |{(K2,K3)|Conditions (3.13) and (3.17)}|= 216;

• |{(K4,K5)|Conditions (3.19),(3.20) and (3.21)}|= 229;

• |{(K6,K7)|Conditions (3.14),(3.18),(3.22) and (3.23)}|= 214.

Note that there are 216 and 215 possible values of K1 and K8 respectively. There-

fore, Chen and Dai (2011) claimed that there are a total of 290 possible values of KA
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satisfying the above 12 conditions and thus there are 290 weak keys.

3.4.2 Chen and Dai’s 7-Round Related-Key Amplified Boomerang Distinguisher

Now, we describe Chen and Dai’s related-key amplified boomerang distin-

guisher for Rounds 1–7 under the class of 290 weak keys (KA,KB,KC,KD) described in

Section 3.4.1.

The first related-key differential α
2→ β for this distinguisher is the 2-round

related-key differential (048||b) → (032||c||016) with probability of one for Rounds

1–2 under (KA,KB) or under (KC,KD), where 0i represents a binary string of i zeros

for i ≥ 2. The second related-key differential γ
5→ δ for this distinguisher is the 5-

round related-key differential (048||b)→ 0 with probability 2−27 for Rounds 3–7 under

(KA,KC) or under (KB,KD). In Figure 3.5, Figure 3.6 and Figure 3.7, we illustrate the

two related-key differentials in detail where R4,3 denotes the 3-rd bit of R4 (the right

half of the output of Round 4) and R4,12 denotes the 12-th bit of R4.

As a result, Chen and Dai obtained a 7-round related-key amplified boomerang

distinguisher with probability 12× (2−27)2×2−64 = 2−118 under a weak key (KA,KB,

KC,KD). As a result, they presented an attack on 8-round MISTY1 without the last

two FL functions by conducting a key recovery on FO8 in a way similar to the early

abort technique (Lu et al., 2008).

3.4.3 An Improved 7-Round Related-Key Amplified Boomerang Distinguisher

We first focus on the FI73 function in the second 5-round related-key differen-

tial γ
5→ δ used in Chen and Dai’s 7-round distinguisher where the probability is 2−16.

Observe that KI73 = K′2 or K′∗2 , depending on which pair from a quartet is considered.

Chen and Dai used a probability value of 2−16 for the differential c→ c operating on

FI73 (an alternative explanation is to consider the two S9 S-boxes where each having

a probability value of 2−8). However, intuitively we should make sure that a weak key

(KA,KB,KC,KD) should also satisfy the condition that the differential c→ c is a possi-

ble differential for FI73; otherwise, the differential c→ c would have a zero probability
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and the 7-round distinguisher would be flawed. Thus, we should put the following two

additional conditions when defining a set of weak keys:

PrFI(·,K′2)(c→ c)> 0; (3.25)

PrFI(·,K′∗2 )(c→ c)> 0. (3.26)

After performing a computer program, we surprisingly found that the number

of (K2,K3) satisfying Conditions (3.13), (3.17), (3.25) and (3.26) is equal to the num-

ber of (K2,K3) satisfying Conditions (3.13) and (3.17), that is |{(K2,K3)|Conditions

(3.13),(3.17),(3.25) and (3.26)}|= 216. This means that the class of weak keys satis-

fying Conditions (3.13)–(3.26) is the same as the class of weak keys satisfying Condi-

tions (3.13)–(3.24) owing to Chen and Dai. Nevertheless, we find something valuable.

For each possible K′2 or K′∗2 , there are exactly two pairs of inputs to FI73 which follow

the differential c→ c, that is to say, the differential c→ c for FI73 has a probability of

2−15 which is twice as large as the probability value used by Chen and Dai.

Therefore, the second 5-round related-key differential γ
5→ δ used in Chen

and Dai’s 7-round distinguisher actually has a probability of 2−26 and the resulting

7-round distinguisher has probability 12× (2−26)2× 2−64 = 2−116 under a weak key

(KA,KB,KC,KD).

In particular, we have the following result.

Proposition 3.3. In the class of 290 weak keys satisfying Conditions (3.13)–(3.26),

1) there are 216 possible values of K1, 214 possible values of K5 and 215 possible

values of K8;

2) there are 214 possible values of (K6,K7); in particular, there are a total of 213

possible values of K7 and for every possible such value, there are 2 possible

values of K6;
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3) there are a total of 216 possible values of K′3;

4) PrFI(·,∀K′2)(c→ c) = PrFI(·,∀K′∗2 )(c→ c) = 2−15.

3.4.4 Attacking the Full MISTY1 under the Class of 290 Weak Keys

We devise a related-key amplified boomerang attack on the full MISTY1 un-

der a weak key from the weak key class based on the 7-round related-key amplified

boomerang distinguisher with probability 2−116.

3.4.4 (a) Preliminary Results

First concentrate on the propagation of the output difference δ (i.e., 0) of the 7-

round distinguisher through the following Round 8 which includes the FL9 and FL10

functions under (KA,KC) or under (KB,KD); see Figure 3.8.

Under (KA,KC), by the key schedule of MISTY1, we have

• ∆KO81 = ∆K8 = 0,

• ∆KO82 = ∆K2 = 0,

• ∆KO83 = ∆K7 = 0,

• ∆KO84 = ∆K4 = 0,

• ∆KI81 = ∆K′5 = b,

• ∆KI82 = ∆K′1 = 0,

• ∆KI83 = ∆K′3 = 0,

• ∆KL9 = ∆(K5||K′3) = 0,

• ∆KL10 = ∆(K′7||K1) = 0.
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Since δ = 0, both the FI81 and FI82 functions have a zero input difference. The

first S9 and S7 in FI81 both have a zero input difference. However, as ∆KI81 = b, it fol-

lows that the second S9 in FI81 has an input difference 02||a, and thus the output differ-

ence of the FI81 function has a form of a||X where X ∈{0,1}9 can take only 28 possible

values and we denote by Sa the set of the 28 possible values of X . Since ∆KO82 = 0

and ∆KI82 = 0, the FI82 function has a zero output difference. Since ∆KO83 = 0, the

FI83 function has an input difference a||X . We assume the output difference for FI83

is Y . Then, the FO8 function has an output difference (a||X)||(Y ⊕ (a||X)), so the FL9

function has an input difference (a||X)||(Y ⊕ (a||X)), but its output difference is in-

determinate (denoted by the question marker in Figure 3.8). The FL10 function has a

zero input and output difference. The same results hold for the propagation of δ under

(KB,KD). Note that X and Y under this case may take a different value from that case

under (KA,KC).

Finally, since the FI82 function has a zero input and output difference, by the

structure of the FO function, we observe that only the subkeys (K1,K′3,K5,K′5,K
′∗
5 ,K7,

K′7,K8) are required to check if a candidate quartet consisting of two ciphertext pairs

produces the output difference δ = 0 of the 7-round distinguisher. As K′5 =FI(K5,K6),

K′∗5 = K′5⊕b and K′7 = FI(K7,K8), we have the following result.

Proposition 3.4. Only the subkeys (K1,K′3,K5,K6,K7,K8) are required to check if a

candidate quartet consisting of two ciphertext pairs satisfies the output difference δ =

0 of the 7-round distinguisher.

3.4.4 (b) Attack Procedure

First, we precompute two hash tables T1 and T2 as follows.

Table T1. Note that KI81 = K′5 or K′∗5 (= K′5⊕ b), KO83 = K7 and KI83 = K′3. Un-

der every possible (K′3,K
′
5,K7), we compute (∆µ,∆ν) for every x = (xL||xR) ∈

{0,1}32, as follows:

• µ = FI81(xL,K′5)⊕FI81(xL,K′5⊕b),
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Figure 3.8: Propagation of δ Through Round 8 with FL9 and FL10

• ν =FI83(FI81(xL,K′5)⊕xR⊕K7,K′3)⊕FI83(FI81(xL,K′5⊕b)⊕xR⊕K7,K′3).

By the structure of FI, we know the left 7 bits of µ must be a and µ has the

form a||X , that is, µ = (a||X) where X ∈ Sa and Sa is defined above. For a

fixed (K′3,K
′
5,K7,µ,ν), on average there are 232× 2−8× 2−16 = 28 satisfying

values of x. We store the satisfying values of x into table T1 indexed by the

value (K′3,K
′
5,K7,X ,ν). There are 216 possible values of K′3, at most 216 possible

values of K′5, 213 possible values of K7, 28 possible values of µ and 216 possible

values of ν . Thus this precomputation takes about 216×216×213×28×216×
4 = 271 FI computations and T1 requires a memory of about 216× 216× 213×
28×216×28×4 = 279 bytes.

Table T2. For every possible (K1,K′7,K8), we compute λ = (K8||016)⊕FL−1
10 (x,K

′
7||

K1) for each x∈{0,1}32. There are 216 possible values of K1, 213 possible values

of K7, 215 possible values of K8 and 216 possible values of K′7. Note that K7 =

FI−1(K′7,K8). For a fixed (x,λ ,K7), on average there are 216×215×2−32 = 0.5

satisfying values of (K1,K′7,K8); for a fixed (K1,K7,K8), there are 232 satisfying

(x,λ ). We make table T2 in the following manner:

For every possible K7:
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For every possible (K1,K8):

• Compute K′7 = FI(K7,K8).

• Find all the 232 possible (x,λ ) such that λ = (K8||016)⊕FL−1
10 (x,

K′7||K1).

• Store (K1,K8) into Table T2 indexed first by K7 and then by (x,λ ).

• Set a binary marker with two possible scenarios (“up” and “down”)

to the set of 232 tuples (K7,K1,K8,x,λ ). The marker’s initial sce-

nario is “down".

Thus, for each K7, there are 231 markers corresponding to the 231 possible values

of (K1,K8) and 232 different (x,λ ) that work under the same (K7,K1,K8) share

the same marker. T2 requires a memory of about 213×216×215×232×4 = 278

bytes. This precomputation has a time complexity of about 213× 216× 215×
232 = 276 FL−1 computations.

Now, we can present the following attack procedure to break the full MISTY1.

1) Initialise zero to an array of 275 counters corresponding to all the 275 possible

values of (K1,K′3,K5,K6, K7,K8).

2) Choose a set of 258.5 plaintext pairs (P,P∗ = P⊕ (048||b)) and another set of

258.5 plaintext pairs (P′,P′∗ = P′⊕ (048||b)). In a chosen plaintext attack sce-

nario, obtain the ciphertexts for the plaintexts P,P∗,P′,P′∗ under KA,KB,KC,KD

respectively. We denote C = (CLL||CLR,CRL||CRR) as the ciphertext for plain-

text P encrypted under KA, C∗ = (CL∗L||CL∗R,CR∗L||CR∗R) as the ciphertext for

plaintext P∗ encrypted under KB, C′ = (CL′L||CL′R,CR′L||CR′R) as the ciphertext

for plaintext P′ encrypted under KC and C′∗ = (CL′∗L ||CL′∗R ,CR′∗L ||CR′∗R ) as the

ciphertext for plaintext P′∗ encrypted under KD.

3) Check whether a candidate quartet (C,C∗,C′,C′∗) meets both the following con-

ditions by storing the ciphertext pairs (C,C∗) and (C′,C′∗) into a hash table in-
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dexed by the values CRL||CRR||CR∗L||CR∗R and CR′L||CR′R||CR′∗L ||CR′∗R .

(CRL||CRR)⊕ (CR′L||CR′R) = 0,(CR∗L||CR∗R)⊕ (CR′∗L ||CR′∗R ) = 0.

Keep only the satisfying quartets.

4) For every remaining quartet (C,C∗,C′,C′∗), do the following sub-steps.

a) Choose all the possible K′3 satisfying the following conditions:

• (CLR∪K′3)⊕CLL⊕ (CL′R∪K′3)⊕CL′L = a||X ′,

• (CL∗R∪K′3)⊕CL∗L⊕ (CL′∗R ∪K′3)⊕CL′∗L = a||X∗,

where X ′ and X∗ represents two indeterminate 9-bit values (note that X ′,X∗

can be different for different quartets, but their values are fixed for a given

quartet and K′3).

b) For every satisfying K′3, do as follows.

(i) Guess K5 and compute the difference just before the FL−1
9 function

between C and C′ and the difference just before the FL−1
9 function

between C∗ and C′∗. Let

• FL−1
9 (CLL||CLR,K5||K′3)⊕FL−1

9 (CL′L||CL′R,K5||K′3)= a||X ′||(Y ′⊕
(a||X ′)),

• FL−1
9 (CL∗L||CL∗R,K5||K′3)⊕FL−1

9 (CL′∗L ||CL′∗R ,K5||K′3)= a||X∗||(Y ∗

⊕ (a||X∗)),

where Y ′ and Y ∗ represent specific 16-bit values.

(ii) Guess K7; by Proposition 3.3-(2), it follows that there are two corre-

sponding values of K6 (for each guessed K7) and we denote them by

K̃6 and K6. Then, do the following four sub-steps.

A) Compute K̃′5 = FI(K5, K̃6);K′5 = FI(K5,K6).

B) For (C,C′), access Table T1 at entry (K′3, K̃
′
5,K7,X ′,Y ′) to get the

possible 32-bit inputs to the FO8 function excluding the XOR op-

eration with KO81. As discussed earlier, when X ′ ∈Sa, there are

28 possible inputs on average and we denote them by x̃1, x̃2, · · · ,
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x̃256. When X ′ does not belong to Sa, there is no input and we

execute Step 4(b)(ii)(D). Similarly, for (C∗,C′∗), access Table T1

at entry (K′3, K̃
′
5,K7,X∗, Y ∗) to get the possible 32-bit inputs to the

FO8 function excluding the XOR operation with KO81. We de-

note them by x̃∗1, x̃
∗
2, · · · , x̃∗256 when X∗ ∈ Sa. When X ′ does not

belong to Sa, there is no input and we execute Step 4(b)(ii)(D).

C) For i = 1,2, · · · ,256, access Table T2 at entry (K7,CLL|| CLR, x̃i)

and flip the corresponding marker to “up". For i = 1,2, · · · ,256,

access Table T2 at entry (K7,CL∗L||CL∗R, x̃
∗
i ) and check whether the

corresponding marker is “up" or “down"; if it is “up", get the cor-

responding (K1,K8) and increase 1 to the counter corresponding to

the guessed (K1,K′3,K5, K̃6, K7,K8), or otherwise execute the next

iteration (Initialise the markers in T2 to be “down" after finishing

all the 256 iterations).

D) Repeat the above two sub-steps (B) and (C) similarly for the case

K′5. When X ′ or X∗ does not belong to Sa, there is no input and we

execute Step 4(b)(ii) with another guess for K7. (If this sub-step is

done, go to Step 4(b)(ii) and so on)

5) For a value of (K1,K′3,K5,K6,K7,K8) whose counter has a non-zero number,

exhaustively search the remaining key bits with two known plaintext-ciphertext

pairs. If a value of (K1,K2, · · · ,K8) is suggested, output it as the secret key of

the full MISTY1.

Note that in Step 4(b)(ii), we check the two pairs from a candidate quartet one

after the other, instead of checking them simultaneously. This is known as the early

abort technique for the (related-key) rectangle attack (Lu & Kim, 2008).

3.4.4 (c) Attack Complexity

The attack requires 258.5× 4 = 260.5 chosen plaintexts. There are a total of

258.5×258.5 = 2117 candidate quartets (C,C∗,C′,C′∗), of which only 2117× (2−32)2 =
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253 quartets are expected to satisfy the two conditions in Step 3. It takes about 259.5

memory accesses to obtain the satisfying quartets. For every remaining quartet, there

exist, on average, 216× (2−7)2 = 22 possible values of K′3 satisfying the two condi-

tions in Step 4(a). Step 4(a) has a time complexity of about 253× 216× 4× 1
2 = 270

FL computations. There are a total of 214 possible values of K5, thus Step 4(b)(i) has a

time complexity of 253×22×214×4× 1
2 = 270 FL computations (Note that some re-

quired intermediate values have been computed in Step 4(a)). On the other hand, there

are a total of 213 possible values of K7, so Step 4(b)(ii)(A) has a time complexity of

253×22×214×213×2 = 283 FI computations. Step 4(b)(ii)(B) has a time complexity

of about 253×22×214×213× 256×32
64 +253×22×214×213×2−1× 256×32

64 = 3 ·288

memory accesses (if conducted on a 64-bit computer) owing to one-bit filtering condi-

tion on X ′. Due to one-bit filtering condition on X∗, Step 4(b)(ii)(C) has a time com-

plexity of about 253× 22× 214× 213× 2−2× 256× 2 = 289 memory accesses. Step

4(b)(ii)(D) has a time complexity of about 3 ·288 +289 = 5 ·288 memory accesses.

The probability that the counter for a wrong (K1,K′3,K5,K6,K7,K8) has a non-

zero number is approximately ∑
2117

i=1 [
(2117

i

)
·(2−128)i ·(1−2−128)2117−i]≈ 2−11. Thus, it

is expected that there are a total of 275×2−11 = 264 wrong values of (K1,K′3,K5,K6,K7,

K8) whose counters are non-zero, so in total we need to access the array of counters

only 264 times in Steps 4(b)(ii)(C) and 4(b)(ii)(D). The 264 wrong values of (K1,K′3,K5,

K6,K7,K8) make at most 279 possible values of (K1,K2, · · · ,K8) and thus it requires

279 + 279× 2−64 ≈ 279 trial encryptions to check them in Step 5. In Step 5, a wrong

value of (K1,K2, · · · ,K8) is suggested with probability 2−64×2 = 2−128, so it is ex-

pected that there remain 279 × 2−128 = 2−49 values of (K1,K2, · · · ,K8). Thus, the

number of suggested wrong user keys is rather low. Overall, the time complexity

of the attack is dominated by Steps 4(b)(ii)(B), 4(b)(ii)(C) and 4(b)(ii)(D), which is

3 ·288+289+5 ·288≈ 291.33 memory accesses plus Step 5. Therefore, by the extremely

conservative estimate used in Section 3.3.3, the attack has a total time complexity of

about 291.33

16 +279 ≈ 287.33 MISTY1 encryptions.
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The counter for the correct key has an expected number of 2117 × 2−116 =

2 and the probability that the counter for the correct key has a non-zero number is

approximately ∑
2117

i=1 [
(2117

i

)
· (2−116)i · (1−2−116)2117−i]≈ 0.86. Therefore, the related-

key amplified boomerang attack has a success probability of 86%.

The memory complexity of the attack is dominated by the space for the array of

275 counters, which is 275× 75
8 ≈ 278.23 bytes. Taking the storage space for T1 and T2

into consideration, we need a total memory space of 279 +278 +278.23 ≈ 280.07 bytes.

It is very worthy to note that we can slightly reduce the memory space by split-

ting T1 into two smaller tables which mainly correspond to FI81 and FI83 respectively,

but at the cost of a few more memory accesses in the attack procedure.

3.4.5 Three Other Classes of 290 Weak Keys

The above sub-sections have shown a class of 290 weak keys and a related-key

amplified boomerang attack on the full MISTY1 under a weak key. Nevertheless, there

exist three other classes of 290 weak keys under which there are similar results. The

new weak key classes are obtained by setting other possible values of the two subkey

bits (K5,3,K5,12), which are further classified into several sub-classes by the possible

values of the two subkey bits combination (K′3,3,K
′
3,12). This will affect only the FL2

function of the first related-key differential and the input difference of FL2 will be

fixed once the setting is given, provided that the output difference of FL2 is 09||a||b.

Likewise, by choosing a number of plaintext pairs with a corresponding difference, we

can conduct a similar attack on the full MISTY1 under every sub-class of weak keys.

In total, we have 292 weak keys under which a related-key amplified boomerang attack

can break the full MISTY1.

One might consider obtaining more weak keys by setting K′4,3 = 1, instead of

K′4,3 = 0 used in our results. This case will affect only the output difference of the FL4

function of the first related-key differential and it seems that we can further classify

the resulting class of weak keys into two sub-classes according to the possible values
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of the subkey bit K6,3 as we did before. However, this case is not possible because

K6,3⊕K∗6,3 = 1 and a detailed analysis reveals that under the condition that the input

difference of FL4 is c||016, the output difference of FL4 under one plaintext pair from

a candidate quartet is definitely not equal to the output difference of FL4 under the

other plaintext pair from the candidate quartet. Consequently, the XOR of the four

differences concerned between the two sub-ciphers when constructing an amplified

boomerang distinguisher is non-zero, so the four related-key differentials cannot form

an amplified boomerang distinguisher.

3.5 Summary

The MISTY1 block cipher has received considerable attention and its secu-

rity has been thoroughly analysed since its publication. In particular, the European

NESSIE project announced that “no weaknesses were found in the selected designs”

when making the portfolio of selected cryptographic algorithms including MISTY1.

In this chapter, we have described 2103.57 weak keys for a related-key differential at-

tack on the full MISTY1 and 292 weak keys for a related-key amplified boomerang

attack on the full MISTY1.

For the very first time, our results exhibit a cryptographic weakness in the

full MISTY1 cipher algorithm, particularly from an academic point of view where

the cipher does not behave like an ideal cipher (in the related-key model) and thus

it cannot be regarded as an ideal cipher. From a practical point of view, our attacks

do not pose a significant threat to the security of MISTY1, for they work under the

assumptions of weak-key and related-key scenarios and their complexity is beyond

current computational capabilities. Nonetheless, the weak key classes mean that a

large fraction of all possible 2128 keys in the whole key space of MISTY1 is weak in

the sense of related-key cryptanalysis, that is, roughly one of every twenty-two million

keys in the larger set of 2103.57 weak keys and thus the chance of picking such a weak

key at random is not trivial. In this sense, the presence of these weak keys has an

impact on the security of the full MISTY1 cipher.
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CHAPTER 4

DIFFERENTIAL ATTACK ON NINE ROUNDS OF THE SEED BLOCK

CIPHER

The SEED block cipher has a 128-bit block length, a 128-bit secret key and is

composed of a total of 16 rounds. It is an ISO standard. In this chapter, we describe two

7-round differentials with probabilities that are slightly greater than the best previously

known one on SEED. With these differentials, we present a differential cryptanalysis

attack on a 9-round reduced version of SEED. The attack requires a memory of 269.71

bytes and has a time complexity of 2126.36 encryptions with a success probability of

99.9% given 2125 chosen plaintexts, or a time complexity of 2125.36 encryptions with

a success probability of 97.8% given 2124 chosen plaintexts. Our result is better than

any previously published cryptanalytic results on SEED in terms of the numbers of

attacked rounds and it suggests for the first time that the safety margin of SEED de-

creases below half of the number of rounds.

4.1 Introduction

The SEED block cipher (KISA, 1998) was designed by a group of Korean

cryptographers in 1998. It has a 128-bit block length, a 128-bit secret key and a total

number of 16 rounds. SEED became a Korean national industrial association stan-

dard (TTA, 1999) and was adopted as an ISO standard (ISO, 2005, 2010). Currently,

SEED is deployed in real applications, particularly by banks and companies in Ko-

rea, to protect the privacy of the users and the transaction data in security applications

like e-commerce and financial services. Further, it was included in PKCS #11 on

Cryptographic Token Interface Standard (PKCS, 2009) and was proposed by Internet

Engineering Task Force (IETF) for Cryptographic Message Syntax (CMS) (Park, Lee,

Kim, & Lee, 2005), Transport Layer Security (TLS) (H. Lee, Yoon, & Lee, 2005),

Secure Real-time Transport Protocol (SRTP) (Yoon, Kim, Park, Jeong, & Won, 2010)
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and IPsec (H. Lee, Yoon, Lee, & Lee, 2005). In addition, Mozilla Firefox web browser

supports the SEED algorithm now.

The designers of SEED analysed its security against differential cryptanaly-

sis (Biham & Shamir, 1991b) as well as certain other cryptanalytic techniques, claim-

ing that a 6-round differential characteristic of SEED would have a probability of at

least 2−130, implying that an effective 6-round differential characteristic for SEED will

not exist. However, Yanami and Shimoyama (2003) presented three 6-round differen-

tial characteristics with probability 2−124 and finally used them to conduct a differen-

tial attack on 7-round SEED with a time complexity faster than exhaustive key search.

Sung (2011) described a 7-round differential with probability 2−122 for SEED, by sum-

ming the probabilities of many 7-round differential characteristics with the same input

and output differences and finally gave a differential attack on 8-round SEED; Sung

also described a 7-round differential with probability 2−124 of SEED. Sung’s attack

on 8-round SEED is the best previously published cryptanalytic result on the SEED

cipher algorithm in terms of the number of attacked rounds.

In this chapter, we further investigate the security of SEED against differen-

tial cryptanalysis. Specifically, we present two 7-round differentials with probabilities

that are slightly larger than the probability of Sung’s best 7-round differential, plus

seventeen 7-round differentials with probabilities which are slightly larger than the

probability of Sung’s second best 7-round differential. More importantly, we devise

a differential attack on 9-round SEED, which requires a memory of 269.71 bytes and

has a time complexity of 2126.36 encryptions with a success probability of 99.9% given

2125 chosen plaintexts, or a time complexity of 2125.36 encryptions with a success prob-

ability of 97.8% given 2124 chosen plaintexts. This is the first published cryptanalytic

attack on 9-round SEED and it suggests that the safety margin of SEED decreases be-

low half of the number of rounds. Table 4.1 summarises previous results and our main

cryptanalytic results on SEED.
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Table 4.1: Main Cryptanalytic Results of Differential Cryptanalysis on SEED

Rounds Data Memory Time Success Prob. Source

7 2126 267 2126.37 68.8% (Yanami & Shimoyama, 2003)
8 2125 267 2125.17 98.1% (Sung, 2011)
9 2125 269.71 2126.36 99.9% Sect. 4.4
9 2124 269.71 2125.36 97.8% Sect. 4.4

Data unit: Chosen plaintexts, Memory unit: Bytes, Time unit: Encryptions.

Organisation. The remainder of this chapter is organised as follows. In the next

section, we describe the SEED block cipher. In Section 4.3, we describe the 7-round

differentials of SEED. In Section 4.4, we present our differential attack on 9-round

SEED. Section 4.5 concludes the chapter.

4.2 The SEED Block Cipher

SEED (KISA, 1998) employs a typical Feistel structure shown in Figure 4.1

with a 128-bit block size and a 64-bit round subkey. However, the round function F of

SEED is very complex, building on the G function. Below we describe the G and F

functions in greater detail.

• The G function. There are two layers in the G function, see Figure 4.2. The

first layer involves two 8×8-bit S-boxes S1 and S2 which are constructed from

two different Boolean functions. The second layer is a permutation which pro-

cesses the output of the first layer, made up of a bitwise AND operation with

four specific values c1, c2, c3 and c4 (see (KISA, 1998)), followed by an XOR

operation on the expanded 16 blocks. Given a four-byte input (X4,X3,X2,X1),

the G function generates a four-byte output (Y4,Y3,Y2,Y1) as follows:

– Y1 = (S1(X1)&c1)⊕ (S2(X2)&c2)⊕ (S1(X3)&c3)⊕ (S2(X4)&c4),

– Y2 = (S1(X1)&c2)⊕ (S2(X2)&c3)⊕ (S1(X3)&c4)⊕ (S2(X4)&c1),

– Y3 = (S1(X1)&c3)⊕ (S2(X2)&c4)⊕ (S1(X3)&c1)⊕ (S2(X4)&c2),

– Y4 = (S1(X1)&c4)⊕ (S2(X2)&c1)⊕ (S1(X3)&c2)⊕ (S2(X4)&c3).
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Figure 4.1: The Feistel Structure of the SEED Block Cipher
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Figure 4.2: The Structures of the F and G Functions

• The F function. As depicted in Figure 4.2, a 64-bit input block of the F function

is divided into two 32-bit blocks C and D. After being XORed with the two 32-
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bit subkeys Ki,1 and Ki,2 respectively, the two blocks pass through three layers of

G function and finally the two 32-bit output blocks C′ and D′ of the F function

are computed as follows:

– C′ = G(G(G((C⊕Ki,1)⊕ (D⊕Ki,2))� (C⊕Ki,1))�G((C⊕Ki,1)⊕ (D⊕
Ki,2)))�G(G((C⊕Ki,1)⊕ (D⊕Ki,2))� (C⊕Ki,1)),

– D′ = G(G(G((C⊕Ki,1)⊕ (D⊕Ki,2))� (C⊕Ki,1))�G((C⊕Ki,1)⊕ (D⊕
Ki,2))).

SEED uses a total of sixteen 64-bit subkeys rki = Ki for the round functions i =

1,2, · · · ,16. All subkeys are derived from a 128-bit secret key K and each round subkey

Ki is made up of two 32-bit subkeys Ki = (Ki,1,Ki,2). The Key Schedule algorithm

works as follows:

1) Represent K as four 32-bit words K = (Kd,Kc,Kb, Ka).

2) The subkeys are generated as follows where ĉi are specific constants (see (KISA,

1998)). For i = 1,2, · · · ,16, compute:

• Ki,1 = G(Kb�Kd� ĉi).

• Ki,2 = G(Kc�Ka� ĉi).

• If i mod 2= 1, then (Kd||Kc)= (Kd||Kc)≫ 8; else (Kb||Ka)= (Kb||Ka)≪

8.

SEED takes a 128-bit plaintext as input and the encryption algorithm E works

as follows. A 128-bit plaintext P is divided into two 64-bit blocks P = (PL,PR). The

right 64-bit block PR is input to the F function with the 64-bit round subkey K1. The

output of the F function is XORed with the left 64-bit block PL which becomes the

right 64-bit input block to the second round while PR becomes the left 64-bit input

block to the second round. After 16 similar encryption rounds, the final 128-bit output

is the ciphertext of the plaintext.
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4.3 Seven-Round Differentials of SEED

In this section, we first describe the 7-round differentials owing to Sung (2011)

and then present two 7-round differentials with probabilities which are slightly larger

than Sung’s best 7-round differential and seventeen 7-round differentials with proba-

bilities slightly larger than Sung’s second best 7-round differential.

4.3.1 Sung’s 7-Round Differentials

Sung (2011) presented a 7-round differential (0x80808000,0,0x87808000,0x8

0808000) 7→ (0x07808000,0x80808000,0x80808000,0) with probability 2−122 against

SEED and a 7-round differential (0x80808000,0,0x83808000,0x80808000) 7→ (0x038

08000,0x80808000,0x80808000,0) with probability 2−124, which were obtained by

summing the probabilities of many 7-round differential characteristics with the same

input and output differences. Refer to Sung (2011) for an illustration of the 7-round dif-

ferentials. Otherwise, see Figure 4.3-(a) where α = 0x80808000 and X = 0x87808000

or 0x83808000.

It is worthy to mention that our computation shows that the probabilities 2−122

and 2−124 for Sung’s 7-round differentials are more precise about 2−121.21 and 2−122.84

respectively if we keep two more significant digits. We will use these more accurate

values in our subsequent analysis.

4.3.2 Our 7-Round Differentials

We performed computer simulations to search 7-round differentials of SEED

over sixteen different differential patterns by considering many 7-round differential

characteristics with the same input and output differences. We find some valuable

results in two patterns that are depicted in Figure 4.3-(a) and (b) as follows.

• Sung’s 7-round differential with probability 2−121.21 is one of the best 7-round

differentials (i.e., 7-round differentials with the largest probability) in Pattern (I).
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Figure 4.3: 7-Round Differentials of SEED
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In Pattern (I), there is another 7-round differential with probability 2−121.21 and

eight additional 7-round differentials with a probability ranging from 2−121.22

to 2−122.81, which are larger than the probability of Sung’s second best 7-round

differential (with probability of 2−122.84).

• There are two 7-round differentials with probability 2−121.07 in Pattern (II) which

are slightly larger than the probability of Sung’s best 7-round differential (with

the probability of 2−121.21). Besides, there are eight additional 7-round differen-

tials with a probability ranging from 2−121.22 to 2−122.81, which are larger than

the probability of Sung’s second best 7-round differential (with probability of

2−122.84).

We summarise all these new 7-round differentials in Table 4.2. As an example,

here we give the probabilities for the rounds of one of our best 7-round differentials,

i.e., (0x80808000,0,0x84808000,0x83808000) 7→ (0x04808000, 0x83808000,0x8080

8000,0), which is the first with Pattern (II) given in Table 4.2. This 7-round differ-

ential is also the one that we will use in Section 4.4. Following Figure 4.3-(b), we

deduce that the first and third rounds have a probability of approximately 2−18.45 each,

the fourth round has a probability of approximately 2−43.79 and the fifth and seventh

rounds have a probability of approximately 2−20.19 each. Clearly, the second and sixth

rounds have a probability of one. Hence, the 7-round differential has a total probability

of 2−18.45×2×2−43.79×2−20.19×2 = 2−121.07.

It is interesting to see from Table 4.2 that the differentials appear pairwise

with the same probability due to the symmetry of the Feistel structure for forward and

backward directions. Our best 7-round differential in Pattern (I) is the counterpart of

Sung’s best 7-round differential. We would like to mention that there exist a large

number of 7-round differentials whose probabilities are not as large as the probability

of 2−122.84 of Sung’s second best 7-round differential but is still bigger than 2−128.
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Table 4.2: Our 7-Round Differentials of SEED

Pattern X X⊕0x8000000 Probability

0x07808000 0x87808000 2−121.21

0x87808000 0x07808000 2−121.21

0x44808000 0xC4808000 2−121.22

0xC4808000 0x44808000 2−121.22

(I) 0x45808000 0xC5808000 2−121.96

0xC5808000 0x45808000 2−121.96

0x4C808000 0xCC808000 2−122.55

0xCC808000 0x4C808000 2−122.55

0x47808000 0xC7808000 2−122.81

0xC7808000 0x47808000 2−122.81

0x84808000 0x04808000 2−121.07

0x04808000 0x84808000 2−121.07

0x44808000 0xC4808000 2−121.22

0xC4808000 0x44808000 2−121.22

(II) 0x45808000 0xC5808000 2−121.96

0xC5808000 0x45808000 2−121.96

0x00808000 0x80808000 2−122.54

0x80808000 0x00808000 2−122.54

0x47808000 0xC7808000 2−122.81

0xC7808000 0x47808000 2−122.81

4.4 Differential Attack on 9-Round SEED

In this section, we devise a differential attack on 9-round SEED based on

the best 7-round differential (that has a probability of 2−121.07) described in Sec-

tion 4.3.2 with α = 0x80808000,β = 0x83808000 and X = 0x84808000. Thus, X̂ =

X ⊕ 0x80000000 = 0x04808000. The attack consists of an offline precomputation

phase and an online attack phase. Without loss of generality, we assume the attacked

rounds are the first 9 rounds of SEED, that is, from Rounds 1 to 9. It is notewor-

thy that similar cryptanalytic results can be obtained by using certain other 7-round

differentials including Sung’s 7-round differentials.
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4.4.1 Precomputation

Suppose x is the 64-bit state immediately after the XOR operations with the

round subkey K9 in the F function of Round 9. We precompute a table Tx, so that,

given an output difference of the F function, we only need a single table lookup (mem-

ory access) to Tx to retrieve the pair of values at state x that have the difference (α,0)

and generate the given output difference after the F function. We generate the table Tx

as follows:

• For every possible 64-bit value x such that x < [x⊕ (α,0)]:

– Compute the output difference immediately after the F function corre-

sponding to the pair of values (x,x⊕ (α,0)) and denote it by ∆y.

– Store x into Table Tx indexed by y.

There are 263 possible values for x and at most 263 possible values for y. Thus,

the precomputation requires a memory of 263× 64
8 = 266 bytes and has a time complex-

ity of about 263× 2 = 264 computations of the F function (which are approximately

equivalent to 264× 1
9 ≈ 260.84 9-round SEED encryptions) and 263 memory accesses

(which are equivalent to 263

9 ≈ 259.84 9-round SEED encryptions by our estimate given

in Section 4.4.3). There are a total of 263 possible combinations of (x,y) and there is,

on average, only one value of x in every entry y of table Tx. Occasionally, there may be

more than one value of x in an entry of table Tx, but it does not affect the correctness

of our attack and an average number of 1 still holds.

4.4.2 Attack Procedure

Now, we present the following attack procedure to break the first 9 rounds

of SEED. Recall that α = 0x80808000,β = 0x83808000, X = 0x84808000 and X̂ =

0x04808000, all of which are fixed for this specific attack. The attack is illustrated in

Figure 4.4.
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F

(α, 0)

F

(∗, ∗)

(α, 0) (∗, ∗)

Round 1

Round 9

(α = 0x80808000, 0, X = 0x84808000, β)
7−→

Round 2 - 8

(X̂ = 0x04808000, 0, β = 0x83808000, α, 0)

Figure 4.4: Differential Attack on 9-Round SEED

1. Choose 2φ structures Si (a specific value of φ will be given below and for i =

1,2, · · · ,2φ ) where a structure is defined to be a set of 264 plaintexts Pi, j (for

j = 1,2, · · · ,264) with the left half taking all the possible 64-bit values, bits (48,

56, 64) of the right half fixed to a certain value such that its complement is not

used as bits (48, 56, 64) of the right half of any other structure and the other 61

bits fixed. In a chosen plaintext attack scenario, obtain all the ciphertexts for the

264 plaintexts in each of the 2φ structures. We denote Ci, j as the ciphertext for

plaintext Pi, j.

2. Choose 2φ structures Ŝi (for i= 1,2, · · · ,2φ ) where a structure Ŝi is obtained by

taking the complement of bits (48, 56, 64) of the right half of all the plaintexts

Pi, j in Si. In a chosen plaintext attack scenario, obtain all the ciphertexts for the

264 plaintexts in each Ŝi.

3. For each pair of structures (Si,Ŝi), perform the following three sub-steps:

a) For 1≤ l ≤ 264, identify all plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,Ĉi,l)

(or more precisely, the quartets (PL
i, j,C

R
i, j, P̂

L
i,l,Ĉ

R
i,l)) such that CL

i, j⊕ ĈL
i,l is

equal to (α,0) using a sorting (or hash) method. For example, by storing

(Pi, j,Ci, j) ((PL
i, j,C

R
i, j) respectively ) indexed by CL

i, j and storing (P̂i, j,Ĉi, j)
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((P̂L

i, j,Ĉ
R
i, j) respectively) indexed by ĈL

i, j⊕ (α,0), where PL
i, j and P̂L

i,l repre-

sent the left halves of Pi, j and P̂i,l respectively, CR
i, j and ĈR

i,l represent the

right half of Ci, j and Ĉi,l respectively and CL
i, j and ĈL

i,l represent the left

halves of Ci, j and Ĉi,l respectively.

b) Store the satisfying plaintext-ciphertext quartets (Pi, j, P̂i,l,Ci, j,Ĉi,l) (or more

concisely, the pairs (CL
i, j,C

R
i, j⊕ĈR

i,l)) into a table TP indexed by PL
i, j⊕ P̂L

i,l .

c) Guess a value for the round subkey K1 and perform the following sub-steps:

(i) Partially encrypt the two right halves respectively from the plaintexts

in Si and Ŝi through the F function of Round 1 and denote the output

difference of the F function as ∆.

(ii) Access entry (∆⊕ (X ,β )) in Table TP to get the plaintext-ciphertext

quartet and assume it is (Pi, j, P̂i,l,Ci, j,Ĉi,l) (the pair (CL
i, j,C

R
i, j ⊕ ĈR

i,l)

respectively).

(iii) Given the selected plaintext-ciphertext quartet (Pi, j, P̂i,l,Ci, j,Ĉi,l) (the

selected pair (CL
i, j,C

R
i, j⊕ĈR

i,l) respectively), access entry ((X̂ ,β )⊕CR
i, j⊕

ĈR
i,l) in the precomputation table Tx to get the intermediate value(s)

immediately after the XOR operations with the round subkey K9 in

the F function of Round 9 and denote it as z. Then, compute two

possible values for K9 as z⊕CL
i, j and z⊕CL

i, j ⊕ (α,0). Note that

CL
i, j⊕ (α,0) = ĈL

i,l .

(iv) Recover the corresponding secret key from each of the obtained can-

didate values on (K1,K9) and check whether the secret key is correct

with one or more plaintext-ciphertext pairs. If it passes this test, then

it is very likely to be the correct user key and we terminate the proce-

dure; otherwise, repeat Step 3 with another pair of structures.

Notice that there are only two possible 64-bit values for the right halves of the

plaintexts in a pair of structures (Si,Ŝi) and it is simple to recover the secret key

from a candidate (K1,K9) by the key schedule of SEED. The overall idea used in this
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attack is similar to that used by Biham and Shamir (1993) to break the full DES block

cipher (NBS, 1977).

4.4.3 Attack Complexity

The attack requires 2× 2φ × 264 = 2φ+65 chosen plaintexts. Steps 1 and 2

have a time complexity of 2φ+65 9-round SEED encryptions. Observe that we collect

another pair of plaintext structures after testing a pair of plaintext structures, so that

we can reuse the memory for storing the pair of plaintext structures. Furthermore,

for a structure Si of 264 plaintexts Pi, j, we store the (identical) right halves PR
i, j of the

plaintexts only once, then store (PL
i, j,C

R
i, j) indexed by CL

i, j and similarly for the other

structure Ŝi. Thus, the memory complexity of the online attack is dominated by the

space for storing the pair of plaintext structures and table TP, which is approximately

264× (8+8)×2+264× (8+8) = 3×268 bytes.

Next, we analyse Steps 3(a)–3(c) for a pair of structures (Si,Ŝi). Step 3(a)

has a time complexity of about 264×2 = 265 memory accesses. There is a 64-bit filter-

ing condition in Step 3(a) and thus it is expected that there are 264×264×2−64 = 264

satisfying ciphertext pairs (Ci, j,Ĉi,l) after Step 3(a). Thus, Step 3(b) has a time com-

plexity of about 264 memory accesses. Since there are only two possible 64-bit values

for the right halves of the plaintexts in a pair of structures (Si,Ŝi), Step 3(c)(i) has a

time complexity of approximately 264× 2× 1
9 = 265

9 9-round SEED encryptions. For

a guessed K1, there is about only one memory access in Step 3(c)(ii)/3(c)(iii) and Step

3(c)(iv) has a time complexity of about 4×2 = 8 computations of the G function to re-

cover the two possible user keys by the key schedule of SEED which are approximately

equal to three computations of the F function plus 2 trial 9-round SEED encryptions.

Hence, for all 2φ pairs of structures, Step 3 has a total time complexity of approxi-

mately 2φ × 265

9 +2φ ×264× 3
9 +2φ ×264×2 = 23

9 ×2φ+64 9-round SEED encryptions

and 2φ ×265 +2φ ×264 +2φ ×264× (1+1) = 5×2φ+64 memory accesses.

In total, the online attack has a time complexity of approximately 2φ+65+ 23
9 ×

2φ+64 = 41
9 ×2φ+64 9-round SEED encryptions and 5×2φ+64 memory accesses.
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As mentioned in Section 3.3.3 (c), the question on how many memory accesses

(table lookups) are equivalent to one SEED encryption in terms of time depends closely

on the used platform and SEED implementation as well as the storage location of the

sorted table. In theoretical block cipher cryptanalysis, it is usually assumed by default

that a table is stored in an ideal place, RAM say, like an S-box table and it takes an

almost constant time to access an entry in a sorted table independently of the number

of entries. Thus, an extremely conservative estimate is that 9 memory accesses equal

a 9-round SEED encryption in terms of time assuming that the F function without the

XOR operations with a round subkey is precomputed in a table and is equivalent to

one memory access by neglecting the computational complexity for other operations

and the key schedule. Thus, one round is equivalent to one memory access. As a

consequence, the total time complexity of the online attack is 41
9 ×2φ+64 + 5×2φ+64

9 =

46
9 ×2φ+64 9-round SEED encryptions.

By taking the complexity for the precomputation into consideration, the attack

requires a total memory of approximately 3×268 +266 ≈ 269.71 bytes and a total time

complexity of approximately 46
9 × 2φ+64 ≈ 2126.36 9-round SEED encryptions, when

we let φ = 60.

The attack succeeds if there is at least one right plaintext pair. When φ = 60,

for each candidate (K1,K9) there are 2φ × 264 = 2124 candidate plaintext pairs that

have an input difference (α,0,?,?) to Round 2 and an output difference (?,?,α,0)

immediately after Round 8 (that is, after Step 3(a)), thus the attack has an expected

success probability of approximately 1− (1−2−121.07)2124 ≈ 1−e−22.93 ≈ 99.9%.

We can obtain a faster attack with a smaller success probability by using a

smaller number of data, for example, if we let φ = 59, (that is, 259 pairs of plaintext

structures — a total of 2124 chosen plaintexts). Then the resulting attack requires

the same amount of memory of 269.71 bytes, but has a total time complexity of 46
9 ×

2φ+64 ≈ 2125.36 9-round SEED encryptions, with an expected success probability of

approximately 1− (1−2−121.07)2123 ≈ 1−e−21.93 ≈ 97.8%.

86



www.manaraa.com

S
iti H

asm
ah D

igital Library
Observe that all the table lookups are operated on either 64-bit or 128-bit data

with a 64-bit index and we assume each table lookup is done with a single memory

access as widely adopted in theoretical analysis. However, on a 64-bit computer in

reality, it takes two memory accesses to retrieve 128-bit data with a 64-bit index, thus

the resulting number of memory accesses will be 2φ × 265× 2+ 2φ × 264× 2+ 2φ ×
264× (2+1) = 9×2φ+64 and the resulting total time complexity of the attack will be
41
9 ×2φ+64+ 9×2φ+64

9 ≈ 2φ+66.48 9-round SEED encryptions which is still smaller than

that for exhaustive key search when φ = 60 or 59.

It is worthy to notice that the structure pairs (Si,Ŝi) can be generated by using

different keys, like what Biham and Shamir (1993) mentioned for their DES attack.

Under this scenario, we can find one or more of the used secret keys as long as there

is a right plaintext pair.

4.4.4 Notes

In this subsection, we describe two time-memory trade-offs to the above attack

and compute the success probabilities of Yanami and Shimoyama’s 7-round attack and

Sung’s 8-round attack.

4.4.4 (a) Note 1

Observe that the round functions of Rounds 1 and 9 have the same input dif-

ference (α,0), thus we can obtain a time-memory trade-off by making the following

revisions to the above attack. For every satisfying plaintext-ciphertext quartet after

Step 3(a), with a single lookup to entry ((X ,β )⊕PL
i, j⊕ P̂L

i,l) in table Tx, we retrieve

intermediate value(s) immediately after the XOR operations with the round subkey K1

in the F function of Round 1 and we denote it by ẑ, followed by computing the two

possible values for K1 as K1 = ẑ⊕PR
i, j and K1 = ẑ⊕ P̂R

i,l . We then retrieve the two

possible values for K9 with a single lookup to Tx and finally check whether one of the

four combinations on (K1,K9) produces the correct secret key.
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For a structure, we only need to store (PL

i, j,C
R
i, j) indexed by CL

i, j. As a re-

sult, this time–memory trade-off requires a total memory of approximately 264× (8+

8)× 2+ 266 ≈ 269.17 bytes. This time–memory trade-off has a total time complexity

of approximately 2125 + 260×264×(1+1+1)
9 +260×264× 4×4

9×3 +260×264×4≈ 2126.8 9-

round SEED encryptions when using 260 pairs of plaintext structures with the same

success probability of 99.9%. Meanwhile, it has a total time complexity of approxi-

mately 2124+ 259×264×(1+1+1)
9 +259×264× 4×4

9×3 +259×264×4≈ 2125.8 9-round SEED

encryptions when using 259 pairs of plaintext structures with the same success proba-

bility of 97.8%. Each version is slightly slower than the corresponding attack version

described in the last subsection, but requires a slightly smaller memory.

4.4.4 (b) Note 2

Another time–memory trade-off can be obtained by precomputing a table so

that we can retrieve the candidate subkey K9 with a single table lookup to this table,

given a pair of input blocks to the F function with difference (α,0) and their output

difference immediately after the F function. A straightforward way to generate such a

table is as follows:

• For every possible 64-bit value u such that u < [u⊕ (α,0)]:

– For every possible value of the round subkey K9:

* Compute w = F(u,K9)⊕F(u⊕ (α,0),K9).

* Store K9 into the table indexed by (u,w).

There are 263 possible values for u and at most 264− 1 possible values for w.

Thus, the precomputation requires a memory of 263× (264−1)× 64
8 ≈ 2130 bytes (this

is smaller than, more specifically, a quarter of a memory of 2132(= 2128× 16) bytes

required by the dictionary or codebook attack) and has a time complexity of about

263×264×2 = 2128 computations of the F function (which are approximately equiv-

alent to 2128× 1
9 ≈ 2124.84 9-round SEED encryptions) and 263× 264 = 2127 memory
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accesses (which are equivalent to 2127

9 ≈ 2123.84 9-round SEED encryptions by our es-

timate given in Section 4.4.3). There are a total of about 263× 264 = 2127 possible

combinations of (u,K9,w) and thus on average there is about only one value of K9 in

every single entry (u,w) of the table.

In fact, we can achieve greater efficiency. Recall that x is the 64-bit state im-

mediately after the XOR operation with the round subkey K9 in the F function. We

generate the table as follows:

• For every possible 64-bit value x such that x < [x⊕ (α,0)]:

– Compute the output difference of the F function corresponding to the pair

of intermediate values (x,x⊕ (α,0)); and we denote it by y.

– For every possible value of the round subkey K9, store K9 into the table

indexed by (min{x⊕K9,x⊕ (α,0)⊕K9},y).

This latter precomputation also takes the same amount of memory of 2130

bytes, but it has a time complexity of about 263×2 = 264 computations of the F func-

tion (which is approximately equivalent to 264× 1
9 ≈ 260.84 9-round SEED encryptions)

and about 263× 264 = 2127 memory accesses which is slightly faster than the former

precomputation.

Consequently, we can retrieve the candidate K9 with a single lookup to entry

(min{CL
i, j,Ĉ

L
i,l},(X̂ ,β )⊕CR

i, j⊕ ĈR
i,l) of this table in Step 3(c)(iii) of the online attack

procedure given in Section 4.4.3. As a result, the resulting attack has a total time

complexity of approximately 2125+ 260×264×(1+1)
9 +260×264×2× 1

9 +
260×264×(1+1)

9 +

260× 264× 2
9 + 260× 264 + 2127

9 ≈ 2126.26 9-round SEED encryptions given 260 pairs

of plaintext structures with the same success probability of 99.9%. Meanwhile, it has

a total time complexity of approximately 2124 + 259×264×(1+1)
9 + 259× 264× 2× 1

9 +

259×264×(1+1)
9 + 259× 264× 2

9 + 259× 264 + 2127

9 ≈ 2125.51 9-round SEED encryptions

given 259 pairs of plaintext structures with the same success probability of 97.8%. The
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first version is slightly faster than the corresponding version described in Section 4.4.3

and the second version is slightly slower than the corresponding version described in

Section 4.4.3, but both require a dramatically larger memory.

4.4.4 (c) Note 3

Yanami and Shimoyama’s 7-round attack and Sung’s 8-round attack used 264

counters on the attacked last round subkey to filter out the candidate with the highest

number as the correct subkey. Thus, we can follow Theorem 3 of Selçuk (2008) to

compute their approximate success probabilities which are roughly 68.8% and 98.1%,

respectively. Note that they can achieve a higher success probability simply by con-

sidering the counters with the highest few numbers.

4.5 Summary

SEED is a 128-bit block cipher which is an ISO standard with a 128-bit secret

key and a total of 16 rounds. In this chapter, we have described some 7-round differ-

entials with probabilities slightly larger than the previously known ones on SEED and

have presented a differential attack on 9-round SEED. The presented attack is theoret-

ical and it does not threaten the security of the full SEED cipher. Nevertheless, from a

cryptanalytic view, it suggests that the safety margin of SEED decreases below half of

the number of rounds.
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CHAPTER 5

IMPOSSIBLE DIFFERENTIAL ATTACK ON THE FULL CHAIN BLOCK

CIPHER

The CHAIN block cipher has a variable block length, a variable secret key

length and a variable number of rounds. It is a byte-oriented block cipher designed by

Peyravian and Coppersmith. In this chapter, we falsify the feasibility of the differential

attacks presented by the designers on 8-round 128-bit CHAIN block cipher. More

importantly, we describe r′-round impossible differential characteristic on CHAIN for

a variable block length where r denotes the minimum number of rounds to thwart

both differential and linear attacks and r′ ∈ {r− 1,r} . Building on such r′-round

impossible differential characteristics, we present an impossible differential attack on

(r′+ 2)-round CHAIN cipher. This shows that the full CHAIN cipher is not a secure

cipher that is suitable for any security applications. To the best of our knowledge, this

is the first known cryptanalytic attack against CHAIN.

5.1 Introduction

The CHAIN block cipher was designed by Peyravian and Coppersmith (1999)

from IBM. CHAIN is a unique iterated block cipher as it was designed based on two

different structures, i.e., Feistel network and substitution-permutation network. It has

a variable block length, a variable secret key length and a variable number of rounds.

By analysing the avalanche effect of the cipher, Peyravian and Coppersmith suggested

a possible minimum number of rounds for the cipher, denoted by r (which depends on

the block length, see Section 5.2 for the exact value of r) to resist against both differ-

ential and linear attacks. We consider the version of CHAIN that uses r+2 rounds in

this chapter. Such versions are cryptographically stronger than the full CHAIN cipher

which uses r rounds.
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The impossible differential attack was first used by Knudsen to attack the

DEAL cipher (Knudsen, 1998) and it was later formalised by Biham et al. (1999a).

The main principle underlying an impossible differential attack is to construct differ-

entials that hold with probability 0 (namely impossible differentials) to progressively

filter out the wrong keys till the right key remains. Note that an impossible differen-

tial attack is opposed to a conventional differential attack (Biham & Shamir, 1991a)

as differentials with high probability are exploited to find the right key in differen-

tial cryptanalysis. The reader may refer to Section 2.1.3 (b) for a discussion on the

impossible differential attack.

In this chapter, we initiate the security analysis of CHAIN. We first falsify the

differential attacks presented by the designers on CHAIN with a block length of 128

bits using the conventional differential cryptanalysis proposed by Biham and Shamir

(1991a). Furthermore, we prove that an attacker can always construct an r′-round

impossible differentials on CHAIN for a variable block length where r′ ∈ {r− 1,r}.
Building on such r′-round impossible differentials, we present an impossible differen-

tial attack on (r′+ 2)-round CHAIN cipher using two concrete versions of CHAIN,

i.e., a 7-round CHAIN with a block length of 64 bits and an 8-round CHAIN with a

block length of 128 bits. Table 5.1 summarises our impossible differential attacks on

CHAIN where CP refers to the number of chosen plaintexts and Enc. refers to the

required number of encryption operations of the relevant version of CHAIN.

Table 5.1: Main Cryptanalytic Results of Impossible Differential Cryptanalysis
on CHAIN

Rounds Data Memory Time Source

8 2111.42 CP 288Bytes 2111.42Enc. Section 5.5.1
7 255.42 CP 251.81Bytes 255.48Enc. Section 5.5.2
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Organisation. The remainder of the chapter is organised as follows. In the next sec-

tion, we describe the CHAIN cipher. In Section 5.3, we falsify the previous differential

analysis presented by the designers on CHAIN. In Section 5.4, we provide a generic

construction of impossible differential characteristic of CHAIN for a variable block

length and prove that these characteristics cover either r−1 or r rounds of the cipher.

In Section 5.5, we illustrate the impossible differential attack on (r+2)-round CHAIN

using two concrete examples, i.e., 64-bit CHAIN and 128-bit CHAIN. Finally, Section

5.6 concludes the chapter.

5.2 The CHAIN Block Cipher

CHAIN employs an unique structure that combines both the Feistel network

and substitution-permutation network with a variable block length, a variable secret

key length and a variable number of rounds. We denote the block length in terms of

bits and bytes as |B| and |B|8 respectively. Peyravian and Coppersmith limits |B|8 ≥ 8

and |B|8/2 mod 2 = 0. The main building block of CHAIN is the round function F

which is depicted in Figure 5.1. Due to the modulo 8 reduction operation involved in

the CHAIN cipher, we use slightly different notations in describing the CHAIN cipher

as compared to other ciphers in this thesis. In particular, in this chapter, each number

starts from 0 instead of 1. Such notations will simplify the description of the attacks

presented in this chapter.

The F function. The F function consists of four sub-functions as follows:

• Sub: {0,1}|B|/2 → {0,1}|B|/2 is a substitution layer which uses four dif-

ferent 8×8-bit bijective S-boxes denoted as S0,S1,S2 and S3 . If X =

(X0||X1|| · · · ||X|B|8/2−1) is a |B|/2-bit block of |B|8/2 8-bit words X0,X1, · · · ,
X|B|8/2−1 and Y = (Y0||Y1|| · · · ||Y|B|8/2−1) is a |B|/2-bit block of |B|8/2 8-bit

words Y0,Y1, · · · ,Y|B|8/2−1, then Sub(X) is defined as

– For i = 0,1,2, · · · , |B|8/2−1, compute Yi = Si mod 4(Xi).

– Output Sub(X) = Y .
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rkL,i

L1
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L2
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Sub Sub

XRiXLi

XLi+1 XRi+1

rkR,i

Figure 5.1: The Round Function F of CHAIN

• Mix: There are two linear functions L1 and L2. If X is a |B|/2-bit block,

then L1 is defined as L1(X) = (X ≫ 16)⊕ (X ≫ 8) and L2 is defined as

L2(X) = X ⊕ (X ≪ 24) where≫ and≪ refer to right and left rotations

of a bit string respectively.

• Swap: If X and Y are |B|/2-bit blocks, then Swap is defined as Swap(X ,Y )=

(Y,X).

• ARK: If X and Y are |B|/2-bit blocks, then ARK is defined as ARK(X ,Y )=

X⊕Y.

F : {0,1}|B|×{0,1}|B|→{0,1}|B| is a non-linear function. If Xi−1 =(XLi−1,XRi−1)

is a |B|-bit block of two |B|/2-bit words XLi−1 and XRi−1, Yi−1 =(Y Li−1,Y Ri−1)

is a |B|-bit block of two |B|/2-bit words Y Li−1 and Y Ri−1, then F(Xi−1,Yi−1) is

defined as follows:

1) Compute XLi =Sub(Sub(XRi−1⊕L2(Sub(XLi−1⊕L1(XRi−1))))⊕Y Li−1).

2) Compute XRi = Sub(Sub(XLi−1⊕L1(XRi−1))⊕Y Ri−1).

3) Output F(Xi−1,Yi−1) = XLi||XRi.
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CHAIN uses a total of r |B|-bit subkeys rki = Ki for the F functions i =

0,1,2, · · · ,r− 1. All subkeys are derived from a k-bit secret key K where k denotes

the block length of K in terms of bits and each round subkey Ki is made up of two

|B|/2-bit subkeys Ki = (Ki,1,Ki,2). We omit the details of the key schedule algorithm

as we only focus on the encryption algorithm in this chapter.

CHAIN takes a |B|-bit plaintext P as input. A |B|/2-bit plaintext P is di-

vided into two |B|/2-bit blocks P = (PL,PR). PL (PR respectively) is made up of

|B|8/2 bytes PL = (PL,0,PL,1,PL,2, . . . ,PL,|B|8/2−1) (PR = (PR,0,PR,1,PR,2, . . . ,PR,|B|8/2−1)

respectively). Its encryption algorithm E works as follows:

• Set r ≥ d |B|8+14
5 e.

• Set L0 = P.

• For i = 0,1,2, · · · ,r−1, compute Li+1 = F(Li,Ki).

• Output ciphertext C = Lr.

For example, r ≥ 5 for the 64-bit CHAIN block cipher (denoted as CHAIN-64) and

r ≥ 6 for the 128-bit CHAIN block cipher (denoted as CHAIN-128). In this chapter,

we consider (r+2)-round CHAIN-64 and CHAIN-128.

5.3 On the Peyravian and Coppersmith’s Differential Attacks

To analyse the strength of CHAIN-128 against differential attack, Peyravian

and Coppersmith (1999) presented six different so called most promising differential

attacks against CHAIN-128. For CHAIN-128, |B|= 128 and |B|8 = 16.

Peyravian and Coppersmith presented a 6-round differential characteristic of

CHAIN based on a 2-round iterated differential characteristic (i.e., the input difference

is the same as the output difference). We first define the 8-bit non-zero constants a and

∗ where ∗ is not a fix 8-bit value.
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Such 2-round iterated differential characteristics α

2→ β shown in Figure 5.2

hold with probability of 2−64 where α =L0⊕L′0 =(aaaaaaaa,08a08a08a08a) and β =

L2⊕L′2 = (aaaaaaaa,08a08a08a08a). By treating the S-boxes as completely random,

∗ will propagate to become a with the probability of 1
256 after going through a S-box.

We have PrSub(∗∗∗∗∗∗∗∗ → aaaaaaaa) = ( 1
256)

8. When ∗∗∗∗∗∗∗∗ → aaaaaaaa

holds, then 08 ∗08 ∗08 ∗08∗→ 08a08a08a08a holds with certainty.

By concatenating three 2-round iterated differential characteristics, a 6-round

differential characteristic of CHAIN is formed with the probability of ( 1
256)

24 = 2−192.

To find the correct key, at least one right plaintext pair is needed. When the attacker

obtains 297 chosen plaintexts, a total of 297×297

2 = 2193 chosen plaintext-ciphertext pairs

can be generated. On average two right plaintext pairs will be obtained since the

differential characteristic has a probability of 2−192. Finally, the attacker can break

8-round CHAIN-128 based on a 6-round differential characteristic by exploiting the

attack technique used by Biham and Shamir (1991b).

However, the S-boxes are known to be non-linear and not completely random.

More precisely, for any particular input difference, not all the output differences are

possible. Furthermore, the possible output differences do not occur uniformly. We

run a computer simulation to compute the XOR difference distribution table (DDT) of

four different S-boxes. The best differential approximation for any S-box out of the

four S-boxes has the probability of 10
256 ≈ 2−4.678. By repeating the 2-round iterated

differential characteristic three times, the 6-round differential characteristic will prop-

agate through 96 active S-boxes (instead of 24 active S-boxes claimed by Peyravian

and Coppersmith) with the probability of at most 2−4.678×96 ≈ 2−449.1. Note that an

active S-box is defined to be an S-box that has a non-zero input difference. Similarly,

an inactive S-box is defined to be an S-box that has a zero input difference. Obviously,

even the attacker can gather all 2128 possible plaintexts, only 2128×2128

2 = 2255 chosen

plaintext-ciphertext pairs can be generated.

Since none of the 6-round differential characteristics presented by Peyravian
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L1
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L2
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L2

aaaaaaaa 08a08a08a08a
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opqrstuv
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0808080808080808

0808080808080808

0808080808080808
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08j08k08l08m

0808080808080808

0808080808080808

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3S0S1S2S3S0S1S2S3

08b08c08d08e

0808080808080808

mjjkkllm

mjjkkllm

opqrstuv 08j08k08l08m

Figure 5.2: The 2-Round Iterated Differential Characteristic of CHAIN
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and Coppersmith (1999) exists with the probability higher than 2−128, thus no differ-

ential attacks are applicable to break 8-round CHAIN-128.

5.4 A Generic Impossible Differential Attack on r+2-Round CHAIN

In this section, we show that CHAIN is vulnerable to the impossible differen-

tial attack even if the number of rounds is increased from r to r + 2. In particular,

we present a way to construct a generic r′-round impossible differential characteristic

of CHAIN where r′ ∈ {r−1,r} using the miss-in-the-middle approach introduced by

Biham et al. (1999b) (see Section 2.1.3 (b) for details). Building on such r′-round

impossible differential characteristics of CHAIN, we can devise an impossible differ-

ential attack against at least r′+2-round CHAIN.

5.4.1 Differential Characteristics with the Probability of One

To construct an impossible differential characteristic, the attacker seeks for two

possibly identical differential characteristics with probability of one and concatenates

such two differential characteristics such that the intermediate difference of the two

differential characteristics contradict each other. We thus seek for a generic form of

the differential characteristics which occur with certainty such that there is a known

difference in at least one of its bytes (or 8-bit words) in either a plaintext or ciphertext

pair.

As the S-boxes are bijective components, any non-zero input difference that

propagates through the S-boxes will necessarily result in a non-zero output difference.

Since we will primarily be interested in an arbitrary difference (i.e., to determine if any

difference is present), we ignore the effect of the S-boxes in our subsequent discussion.

Observe that the XOR of the round keys is canceled out when we consider both input

and output XOR differences. Consequently, it suffices to examine the L1,L2 and Swap

functions to determine how the difference in each byte propagates across each round.

In view of these observations, the input difference in round i+ 1 (denoted as

∆Li+1) can be expressed in terms of the input difference in round i (denoted as ∆Li) in
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the following compact form where Li = (LLi,LRi).

∆LLi+1 = ∆LLi⊕ (∆LLi≪ 24)⊕ (∆LRi≪ 16)⊕ (∆LRi≪ 8)⊕∆LRi⊕

(∆LRi≫ 8)⊕ (∆LRi≫ 16), (5.1)

∆LRi+1 = ∆LLi⊕ (∆LRi≫ 8)⊕ (∆LRi≫ 16). (5.2)

The relationships between the input differences in rounds i and i+ 1 can be further

expressed in terms of bytes. For j = 0,1,2, · · · , |B|8/2−1, it can be defined as follows:

∆LLi+1, j = ∆LLi, j⊕∆LLi, j+3 mod (|B|8/2)⊕∆LRi, j−2 mod (|B|8/2)⊕

∆LRi, j−1 mod (|B|8/2)⊕∆LRi, j⊕∆LRi, j+1 mod (|B|8/2)⊕

∆LRi, j+2 mod (|B|8/2), (5.3)

∆LRi+1, j = ∆LLi j ⊕∆LRi, j−1 mod (|B|8/2)⊕∆LRi, j−2 mod (|B|8/2). (5.4)

The following lemma investigates the bytes of ∆LL0 and ∆LR0 involved in ∆LRi

after i rounds of encryption.

Lemma 5.1. After i rounds of encryption (for i≥ 2), ∆LRi, j will involve the following

bytes of ∆LL0 and ∆LR0 :

• ∆LL0,k : k = j− 2i+ 2 mod (|B|8/2), j− 2i+ 3 mod (|B|8/2), . . . , j, j+ 1 mod

(|B|8/2), . . . , j+3i−7 mod (|B|8/2), j+3i−6 mod (|B|8/2) and k = j+3i−
3 mod (|B|8/2);

• ∆LR0,k : k = j−2i mod (|B|8/2), j−2i+1 mod (|B|8/2), . . . , j, j+1 mod

(|B|8/2), . . . , j+3i−4 mod (|B|8/2).

Besides, ∆LL0, j−2i+2 mod (|B|8/2), ∆LL0, j+3i−3 mod (|B|8/2) and ∆LR0, j−2i mod (|B|8/2) will

be involved in ∆LRi, j exactly once.
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Proof. This lemma can be proved by mathematical induction. First, Equations (5.3)

and (5.4) easily yields:

∆LR1, j = ∆LL0, j⊕∆LR0, j−1 mod (|B|8/2)⊕∆LR0, j−2 mod (|B|8/2), (5.5)

∆LR2, j = ∆LL1, j⊕∆LR1, j−1 mod (|B|8/2)⊕∆LR1, j−2 mod (|B|8/2)

= ∆LL0, j⊕∆LL0, j+3 mod (|B|8/2)⊕
j+2 mod (|B|8/2)⊕

k= j−2 mod (|B|8/2)

∆LR0,k

⊕∆LL0, j−1 mod (|B|8/2)⊕∆LR0, j−2 mod (|B|8/2)⊕∆LR0, j−3 mod (|B|8/2)

⊕∆LL0, j−2 mod (|B|8/2)⊕∆LR0, j−3 mod (|B|8/2)⊕∆LR0, j−4 mod (|B|8/2)

= ∆LL0, j−2 mod (|B|8/2)⊕∆LL0, j−1 mod (|B|8/2)⊕∆LL0, j

⊕∆LL0, j+3 mod (|B|8/2)⊕∆LR0, j−4 mod (|B|8/2)⊕∆LR0, j−3 mod (|B|8/2)

⊕∆LR0, j−2 mod (|B|8/2)⊕
j+2 mod (|B|8/2)⊕

k= j−3 mod (|B|8/2)

∆LR0,k. (5.6)

Assume that the result holds for i rounds of the encryption, i ≥ 2. Thus,

∆LRi+1, j includes ∆LL1,k1 for k1 = j−2i+2 mod (|B|8/2) to j+3i−6 mod (|B|8/2)

together with k1 = j + 3i− 3 mod (|B|8/2) as well as ∆LR1,k2 for k2 = j− 2i mod

(|B|8/2) to j+3i−4 mod (|B|8/2). Substituting ∆LL1,k and ∆LR1,k in terms of ∆LL0

and ∆LR0, the following bytes will be involved:

• ∆LL0,k,k = k1,k1 +3 mod (|B|8/2) and k = k2,

• ∆LR0,k,k = k1−2 mod (|B|/2),k1−1 mod (|B|8/2),k1,k1+1 mod (|B|8/2),k1

+2 mod (|B|8/2),k2−1 mod (|B|8/2),k2−2 mod (|B|8/2).

Hence, ∆LL0, j−2i mod (|B|8/2) comes from ∆LR1, j−2i mod (|B|8/2). Meanwhile,

∆LL0, j+3i mod (|B|8/2) comes from ∆LL1, j+3i−3 mod (|B|8/2). Our result now follows by

our induction hypothesis.

Lemma 5.2. Let ∆L0 = (∆LL0,∆LR0) = (d,0, . . . ,0) be a plaintext pair with a nonzero

difference d in byte 0. Let n1 = b |B|8+14
10 c and n2 = b |B|8+12

10 c. Then ∆LRn1,2n1−2 = d′

100



www.manaraa.com

S
iti H

asm
ah D

igital Library
and ∆LRn2,2n2−1 = 0 for some nonzero byte difference d′.

Proof. Observe that since ∆LL j = 0 for j 6= 0 and ∆LR j = 0 for all 0≤ j≤ |B|8/2−1,

for any i and j,0 ≤ j ≤ |B|8/2− 1, ∆LRi, j = 0 if and only if it does not involve

∆LL0,0 while ∆LRi, j has a known nonzero difference d′ if and only if it involves

∆LL0,0 exactly once. By Lemma 5.1, ∆LR j,n2 includes the bytes ∆LL0,k,k = j−
2n2 + 2 mod (|B|8/2), . . . , j, . . . , j + 3n2− 6 mod (|B|8/2), and k = j + 3n2− 3 mod

(|B|8/2). Let j = 2n2−1, where n2 = b |B|8+12
10 c. Then k = 1, . . . ,5n2−7 and k = 5n2−

4 mod (|B|8/2). Since 5n2−7 = 5b |B|8+12
10 c−7≤ |B|8/2−1 < |B|8/2 and 5n2−4 =

5b |B|8+12
10 c−4> 5( |B|8+12

10 )−1−4= |B|8/2+1, ∆LRn2, j does not involve ∆LL0,0 at all.

Consequently, ∆LRn2,2n2−1 = 0. Similarly, ∆LRn1,2n1−2 involves the bytes ∆LL0,k,k =

0,1, . . . ,5n1−8 and k = 5n1−5 mod (|B|8/2). It is easy to check that 5n1−8< |B|8/2

and 5n1−5 > |B|8/2 so that ∆LRn1,2n1−2 involves ∆LL0,0 exactly once. This concludes

our proof.

We obtain similar results in the reverse direction. The following lemma can be

proved using the same approach as above and thus it is omitted.

Lemma 5.3. Let n1 and n2 be as defined in Lemma 5.2. Further, let d denote an

arbitrary nonzero byte difference.

1. If ∆Ln2 = (d,0, . . . ,0), then after n2 rounds of decryption, ∆LR0,2n2−1 = 0.

2. If ∆Ln1 = (d,0, . . . ,0), then after n1 rounds of decryption ∆LR0,0 = d′ for some

nonzero difference d′.

With the aid of Lemmas 5.2 and 5.3, an impossible differential characteristic

can be constructed in the following theorem.

Theorem 5.1. For the CHAIN cipher with block size |B|8, there exists an r′-round

impossible differential characteristic, where r′ = b |B|8+12
10 c+ b |B|8+24

10 c.
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Proof. We construct a difference characteristic S having n1 rounds in the forward di-

rection and a difference characteristic T having n2 rounds in the backward direction,

where both S and T occur with probability 1 (refer to the preceding section) as follows:

1. First, we construct S. Let ∆L0 = (∆LL0,∆LR0), where ∆LL0 = (0,d,d,0, . . . ,0)

and ∆LR0 = (d,0, . . . ,0), d denoting some nonzero byte difference. It is easy

to verify that ∆L1 = (∆LL1,∆LR1), where ∆LL1 = (d1,0, . . . ,0) and ∆LR1 =

(0,0, . . . ,0). From Lemma 5.2, after another n1 rounds of encryption, we obtain

∆Ln1+1, where ∆LRn1+1,2n1−2 = d′ for some nonzero byte difference d′.

2. Consider ∆Ln2 = (d,0, . . . ,0), where d is some nonzero byte difference. By

Lemma 5.3, after n2 rounds of decryption, we obtain ∆L0 such that ∆LR0,2n2−1 =

0. Let us denote this difference characteristic by D. Now by the structure of

CHAIN, any l-byte rotation of ∆LLn2 and ∆LRn2 simultaneously results in the

corresponding l-byte rotation for each of the ∆LLi and ∆LRi,1 ≤ i ≤ n2. Let

l = 2n1− 2n2− 1 mod |B|8/2. By rotating each of the left and right halves of

D by l bytes, we obtain a difference characteristic T beginning with ∆Ln2 =

(∆LLn2,∆LRn2) and terminating in ∆L0 = (∆LL0,∆LR0) such that ∆LLn2,l =

d,∆LLn2, j = 0, j 6= l,∆LRn2, j = 0 and ∆LR0,2n1−2 = 0.

Consequently, S and T satisfy the required properties, yielding an impossible

differential characteristic having n1 +n2 +1 rounds.

We remark that different characteristics may be obtained by varying l in the

above theorem, as long as for some j, byte j of ∆Ln1+1 and ∆L0 contradict. Further, it

is straightforward to verify that r′ is either equal to r−1 or r. For example, both r′ and

r are equal when |B|8 = 8 or 16.

By adding a round before S and at the end of T each, we can exploit the given

impossible differential characteristic to launch an impossible differential attack for
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r′+ 2 = n1 + n2 + 3 rounds of CHAIN, thereby obtaining the correct key bytes for a

certain portion of rk0 and rkr′+1.

5.5 Impossible Differential Attacks on CHAIN-64 and CHAIN-128

In this section, we demonstrate the application of the generic attack given in

Theorem 5.1 on 7-round CHAIN-64 and 8-round CHAIN-128. In each of these con-

crete examples, we break r′ = n1 +n2 +3 = r+2 rounds of CHAIN using the impos-

sible differential characteristic presented in Section 5.4.

5.5.1 Impossible Differential Attack on 8-Round CHAIN-128

CHAIN-128 has a 128-bit block length and a recommended number of r ≥
d |B|8+14

5 e ≥ 6 rounds. We consider the 128-bit version of CHAIN that uses 8 rounds

in this chapter. Besides, CHAIN-128 uses eight 128-bit subkeys rki = Ki for the F

functions (i = 0,1, · · · ,7). Each subkey Ki is made up of two 64-bit subkeys Ki =

(Ki,1,Ki,2). Lastly, each 64-bit subkey Ki, j is made up of eight bytes Ki, j =(Ki, j,0,Ki, j,1,

Ki, j,2,Ki, j,3,Ki, j,4,Ki, j,5,Ki, j,6,Ki, j,7) for j = 1,2.

Two differential characteristics with probability of 1, S and T , constructed us-

ing Theorem 5.1 are defined as follows.

S = 08aa0808080808a08080808080808 4→?8?8?8?8?8?8?8?8?8?8?8?8y?8?8?8,

T = ∆1x?8?8z08xxxyz0808x0808 2→ s080808080808080808080808080808

where the question marker ?8 represents a binary string of 8 question marker ? (? rep-

resents an indetermine bit; alternatively, ?8 represents an indetermine byte), a,s,x,y,z

and ∆1 represent known non-zero 8-bit words (or a known non-zero byte). The differ-

ential characteristics S and T are illustrated in Figures 5.3 and 5.4.

Since the output difference of the 4-round differential characteristic S contra-

dicts with the input difference of the 2-round differential characteristic T (see byte

LR0,4), thus we have a 6-round impossible differential characteristic D3 08aa0808080808
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Figure 5.3: The 4-Round Differential Characteristic S on CHAIN-128 with Prob-
ability of One
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Figure 5.4: The 2-Round Differential Characteristic T on CHAIN-128 with Prob-
ability of One

a08080808080808
6
6→ s080808080808080808080808080808. Note that both S and T occur

with a probability of 1 and D3 will hold with a probability of 0. By adding one round

before and after D3, we can thus attack 8-round CHAIN-128.

To form such an impossible differential distinguisher, observe that the plaintext

XOR difference ∆P must have the form of S−1
1 (α)α(α⊕β )(β⊕γ)γ08αααβγ0808α08

08 and the ciphertext XOR difference ∆C must have the form of ∆308080808∆40808∆508

080808080808. Such forms are obtained by decrypting the input difference of D3 and

encrypting the output difference of D3.
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5.5.1 (a) Attack Procedure

We can now devise the following impossible differential attack procedure to

break the full 8-round CHAIN-128 illustrated in Figure 5.5.

L1

K0,2

S0S1S2S3S0S1S2S3

K0,1

S−1
1 (α)08080808080808

08α(α⊕ β)(β ⊕ γ)γ08αα
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α08080808080808

L2
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Round 1
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0808080808080808

L2

Round 8
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ρ08080808080808
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∆10
8080808∆20
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s08080808080808

08δ1δ20
808080808

08δ1δ20
808080808

α08080808080808

S−1
1 (α)α(α⊕ β)(β ⊕ γ)γ08αα

08aa0808080808 a08080808080808

Round 2 - 7

D3 0
8aa0808080808a08080808080808

6
6→ s080808080808080808080808080808
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S0S1S2S3S0S1S2S3S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3 S0S1S2S3S0S1S2S3

ρ08080808ρ0808

∆10
8080808∆20

808

∆30
8080808∆40

808

ρ08080808080808

∆50
8080808080808

Figure 5.5: The Impossible Differential Attack on 8-Round CHAIN-128

1) Choose 2φ structures Si (a specific value of φ will be given below and for i =

1,2, · · · ,2φ ) where a structure is defined to be a set of 288 plaintexts Pi, j (for

j = 1,2, · · · ,288) with PL,0,PL,1,PL,2,PL,3,PL,4,PL,6,PL,7,PR,0,PR,1,PR,2 & PR,5)
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take all the possible 8-bit values and PL,5,PR,3,PR,4,PR,6 & PR,7 are fixed to a

certain value. In a chosen plaintext attack scenario, obtain all the ciphertexts for

the 288 plaintexts in each of the 2φ structures. We denote Ci, j as the ciphertext

for plaintext Pi, j.

2) For each structure, perform the following sub-steps:

a) For 1≤ l ≤ 288, identify all plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,Ĉi,l)

where Pi, j⊕ P̂i,l is equal to S−1
1 (α)α(α⊕β )(β ⊕γ)γ08αααβγ0808α0808

and Ci, j⊕ Ĉi,l is equal to ∆308080808∆40808∆508080808080808. Note that

α,β ,γ,∆3,∆4 and ∆5 represent a non-zero byte and they may or may not

equal to each other.

b) Guess a value for K0,1,1 & K0,2,0 and perform the following sub-steps:

(i) Given the remaining plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l).

compute g1(P, P̂) = f1(P)⊕ f1(P̂)⊕ f2(P)⊕ f2(P̂) such that f1(X) =

S0(S0(XL,0⊕XR,6⊕XR,7)⊕K0,2,0) and f2(X)= S1(S1(S1(XL,1⊕XR,0⊕
XR,7)⊕ S0(XL,4⊕XR,2⊕XR,3)⊕XR,1)⊕K0,1,1). Then, discard those

plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if g1(P, P̂) 6= 0.

(ii) Guess a value for K0,1,2 and perform the following sub-steps:

A) Given the remaining plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,

Ĉi,l), compute f3(P)⊕ f3(P̂) such that f3(X) = S2(S2(S2(XL,2⊕
XR,0 ⊕ XR,1)⊕ S1(XL,5 ⊕ XR,3 ⊕ XR,4)⊕ XR,2)⊕K0,1,2). Discard

those plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if f3(P)⊕
f3(P̂)⊕ f1(P)⊕ f1(P̂) 6= 0.

B) Guess a value for K7,1,0 & K7,2,0 and perform the following sub-

steps (see Figure 5.6 for details):

I) Given the remaining plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,

Ĉi,l), compute g2(C,Ĉ) = f4(C)⊕ f4(Ĉ)⊕ f5(C)⊕ f5(Ĉ) where

f4(X)=S−1
0 (S−1

0 (XL,0)⊕K7,1,0) and f5(X)=S−1
0 (XR,0)⊕K7,2,0.

Discard those plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if

g2(C,Ĉ) 6= 0.
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L1

L2
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S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3

S0S1S2S3S0S1S2S3S0S1S2S3S0S1S2S3

∆30
8080808∆40

808 ∆50
8080808080808

Round 8

K7,1
∆10

8080808∆20
808

∆10
8080808∆20

808

ρ08080808080808

ρ08080808080808 ρ08080808ρ0808

∆60
8080808∆70

808

(∆6 ⊕ ρ)08080808(∆7 ⊕ ρ)0808

08(∆6 ⊕ ρ)(∆6 ⊕ ρ)080808(∆7 ⊕ ρ)(∆7 ⊕ ρ)

∆80
8080808080808

∆8(∆6 ⊕ ρ)(∆6 ⊕ ρ)080808(∆7 ⊕ ρ)(∆7 ⊕ ρ)

Figure 5.6: One-Round Decryption of Round 8 of CHAIN-128

II) Guess a value for K7,1,5. For each remaining plaintext-ciphertext

quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l), compute f6(C)⊕ f6(Ĉ) such that

f6(X) = S−1
1 (S−1

1 (XL,5)⊕K7,1,5). If f6(C)⊕ f6(Ĉ) = f5(C)⊕
f5(Ĉ), then the guess of six subkey bytes (K0,1,1,K0,2,0,K0,1,2,

K7,1,0,K7,2,0 and K7,1,5) is wrong and thus can be filtered out.

Given a sufficient number of chosen plaintext-ciphertext pairs, all the wrong

subkey bytes will be discarded. Notice that different impossible characteristics can be

utilized to filter out the other wrong subkey bytes for Round 8 by using a different

differential characteristic T (see the impossible differential attack against CHAIN-64

in Section 5.5.2). Once the round subkey K7 is successfully recovered, Round 8 of

CHAIN-128 can be removed and the same idea can be used to recover the remaining

subkeys for Rounds 1 to 7.

5.5.1 (b) Attack Complexity

The attack requires 2φ ×288 chosen plaintexts. Step 1 has a time complexity of

2φ+88 8-round CHAIN-64 encryptions. For a structure of 288 chosen plaintexts, Step

1 has a memory complexity of 288× (11+16) bytes≈ 292.76 bytes since five bytes of
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all plaintexts are fixed to a certain value. The plaintext-ciphertext pairs are stored in a

table indexed by the ciphertext.

In Step 2(a), for a structure of 288 chosen plaintexts, a total of
(288

2

)
≈ 2175 cho-

sen plaintext-ciphertext quartets can be generated. However, the expected remaining

chosen plaintext-ciphertext quartets in a structure is 2175×2−56×2−104× 100
256 ≈ 213.64.

Notice that according to the difference distribution table, for the S-box S0, there are

expected 100 out of 256 possible non-zero input differences x such that S0(x) = y

for a fixed non-zero output difference y. Thus, the memory complexity of Step 2 is

213.64× (11+16+11+3) bytes ≈ 219.00 bytes since 13 bytes of both ciphertexts are

similar. Since there is a 161.36-bit filtering condition in Step 2 for the differences

in the plaintext-ciphertext quartet, thus Step 2 has a time complexity of about 213.64

memory accesses.

Next, we analyse Step 2(b) for a structure of 213.64 chosen plaintext-ciphertext

quartets. Since there exists 216 possible values of (K0,1,1,K0,2,0), Step 2(b)(i) requires

213.64×216×(23 XOR +12 S-box lookup) operations. Since one-round CHAIN-128

encryption requires 3 rotations, 6 XOR and 32 S-box table lookup operations, thus we

consider the sum of 23 XOR and 12 S-box lookup operations equals 35
41 of the time

complexity of one-round CHAIN-128 encryption. Step 2(b)(i) has a time complexity

of 213.64× 216× 35/41
8 ≈ 226.42 8-round CHAIN-128 encryptions. The expected re-

maining chosen plaintext-ciphertext quartets in a structure is 213.64×2−8 = 25.64. Step

2(b)(ii)(A) requires 23 XOR and 12 S-box table lookup operations (which should be

less than
35
41

of the complexity of one-round CHAIN-128 encryption) for each guess of

28 possible values of K0,1,2, thus it has a time complexity of 28×25.64× 35/41
8
≈ 210.42

8-round CHAIN-128 encryptions. The expected remaining chosen plaintext-ciphertext

quartets in a structure is 25.64×2−8 = 2−3.64. Subsequently, Step 2(b)(ii)(B)(I) requires

7 XOR and 6 inverse of S-box table lookup operations (which should be less than
13
41

of the complexity of one-round CHAIN-128 encryption) for each guess of 216 possible

values of (K7,1,0,K7,2,0), thus it has a time complexity of 216×2−3.64× 13/41
8
≈ 27.71

8-round CHAIN-128 encryptions. The expected remaining chosen plaintext-ciphertext
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quartets in a structure is 2−3.64×2−8 = 2−11.64. Finally, Step 2(b)(ii)(B)(II) requires 6

XOR and 6 inverse operations of S-box table lookup operations (which should be less

than
12
41

of the complexity of one-round CHAIN-128 encryption) for each guess of 28

possible values of K7,1,5, thus it has a time complexity of 28×2−11.64× 12/41
8
≈ 2−8.42

8-round CHAIN-128 encryptions.

In total, the impossible attack has a time complexity of approximately 2φ+88+

2φ × (226.42 + 210.42 + 27.71 + 2−8.42) ≈ 2φ+88 8-round CHAIN-128 encryptions and

2φ+13.64 memory accesses.

As mentioned in Section 3.3.3 (c), the question on how many memory accesses

(table lookups) are equivalent to one CHAIN-128 encryption in terms of time depends

closely on the used platform and CHAIN-128 implementation as well as the storage

location of the sorted table. In theoretical block cipher cryptanalysis, it is usually as-

sumed by default that a table is stored in an ideal place, RAM say, like an S-box table

and it takes an almost constant time to access an entry in a sorted table independent

of the number of entries. Thus, an extremely conservative estimate is that 8 memory

accesses equal a 8-round CHAIN-128 encryption in terms of time assuming that the F

function with a round subkey is precomputed in a table and is equivalent to one mem-

ory access by neglecting the computational complexity for the key schedule. Thus, one

round is equivalent to one memory access. As a consequence, the total time complexity

of the impossible differential attack is 2φ+88 + 2φ+13.64

8 ≈ 2φ+88 8-round CHAIN-128

encryptions.

The attack succeeds if the expected number of subkey bytes that will not be

filtered out after performing the above attack procedure is less than 1 as one out

of the 248 possible values of (K0,1,1,K0,2,0,K0,1,2,K7,1,0,K7,2,0,K7,1,5) must be cor-

rect. In the beginning of Step 2(b)(ii)(B)(II),the expected remaining chosen plaintext-

ciphertext quartets in all the structures is 2φ−11.64. Observe that given any guess of

K7,1,5, the last condition is fulfilled with the probability of 2−8 and thus the proba-

bility that each of the 248 possible values of (K0,1,1,K0,2,0,K0,1,2,K7,1,0,K7,2,0,K7,1,5)
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is filtered out using one of 2φ−11.64 possible chosen plaintext-ciphertext quartets is

2−8. It follows that the expected number of (K0,1,1,K0,2,0,K0,1,2,K7,1,0,K7,2,0,K7,1,5)

that will not be filtered out after performing the above attack procedure is 248 ×
(1− 2−8)2φ−11.64

. Thus, by letting φ = 23.42, only one of the 248 possible values of

(K0,1,1,K0,2,0,K0,1,2,K7,1,0,K7,2,0,K7,1,5) will remain and it must be the right subkey.

As a conclusion, the impossible differential attack has a time complexity of

2φ+88 = 2111.42 8-round CHAIN-128 encryption, a memory complexity of 248 bytes

(which is dominated by the step in storing the list of filtered wrong key bytes) and a

data complexity of 2φ+88 = 2111.42 chosen plaintexts.

5.5.2 Impossible Differential Attack on 7-Round CHAIN-64

Different with CHAIN-128, CHAIN-64 has a 64-bit block length and a rec-

ommended number of r ≥ d |B|8+14
5 e ≥ 5 rounds. We consider the 64-bit version of

CHAIN that uses 7 rounds in this chapter. Besides, CHAIN-64 uses seven 64-bit sub-

keys rki = Ki for the F functions i = 0,1, · · · ,6. Each subkey Ki is made up of two

32-bit subkeys Ki = (Ki,1,Ki,2). Lastly, each 32-bit subkey Ki, j is made up of four

bytes Ki, j = (Ki, j,0,Ki, j,1,Ki, j,2,Ki, j,3) for j = 1,2.

Two differential characteristics with probability of 1 S and T constructed are

defined as follows:

S = 08aa08a080808 3→?8?8?8mn?8o0,

T = ?8?8x?808x?8z 2→ 08s080808080808

where the question marker ?8 represents a binary string of 8 question marker ? (?

represents an indeterminate bit; alternatively, ?8 represents an indeterminate byte),

a, l,m,n,s,x and z represent known non-zero 8-bit words (or a known non-zero byte).

The differential characteristics S and T are illustrated in Figures 5.7 and 5.8.
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Figure 5.7: The 3-Round Differential Characteristic S with Probability of One
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Round 1
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S0S1S2S3S0S1S2S3
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Round 2
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08080808

08u0808
0808uu

0808uu

08x0808

08x0808

0808vw

0808yz

08xx08

Backward

Figure 5.8: The 2-Round Differential Characteristic T with Probability of One

Notice that the differential characteristic S is constructed using Theorem 5.1

while the differential characteristic T is constructed by modifying the byte position of

T given in Theorem 5.1 to show that different round subkey bytes can be recovered

using slightly different differential characteristic T . One can remove the last round of

CHAIN if a last round subkey can be fully recovered.
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Since the output difference of the 3-round differential characteristic S contra-

dicts with the input difference of the 2-round differential characteristic T (see byte PR,0

and PR,3), we have a 5-round impossible differential characteristic D3 08aa08a080808
5
6→

08s080808080808. Note that both S and T occur with a probability of 1 and thus, D3

will hold with a probability of 0. By adding one round before and after D3, we can

attack 7-round CHAIN-64.

To form such an impossible differential distinguisher, the plaintext XOR dif-

ference ∆P must have the form of S−1
0 (α)⊕βααβα08β08 and the ciphertext XOR

difference ∆C must have the form of 08∆3∆40808∆50808. Such forms are obtained by

decrypting the input difference of D3 and encrypting the output difference of D3.

5.5.2 (a) Attack Procedure

We now can devise the following impossible differential attack procedure to

break the full 7-round CHAIN-64 illustrated in Figure 5.9.

1) Choose 2φ structures Si (a specific value of φ will be given below and for i =

1,2, · · · ,2φ ) where a structure is defined to be a set of 248 plaintexts Pi, j (for

j = 1,2, · · · ,248) with PL,0,PL,1,PL,2,PL,3,PR,0 & PR,2) take all the possible 8-

bit values and PR,1 & PR,3 are fixed to a certain value. In a chosen plaintext

attack scenario, obtain all the ciphertexts for the 248 plaintexts in each of the 2φ

structures. We denote Ci, j as the ciphertext for plaintext Pi, j.

2) For each structure, perform the following sub-steps:

a) For 1≤ l ≤ 248, identify all plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,Ĉi,l)

such that Pi, j ⊕ P̂i,l is equal to S−1
0 (α)⊕ βααβα08β08 and Ci, j ⊕ Ĉi,l is

equal to 08∆3∆40808∆50808. Note that α,β ,∆3,∆4 and ∆5 represent a non-

zero byte and they may or may not equal with each other.

b) Guess a value for K0,1,1 & K0,2,0 and perform the following sub-steps:

114



www.manaraa.com

S
iti H

asm
ah D

igital Library

D3 0
8aa08a080808

5
6→ 08s080808080808

Round 2 - 6

α08β08S−1
1 (α)⊕ βααβ

L1

L2

K0,2

βααβ

S−1
0 (α)080808

S0S1S2S3

Round 1

S0S1S2S3

S0S1S2S3S0S1S2S3

K0,1

a08080808aa08

α080808

08γδ08

08αβ08

αα0808

08γδ08 α080808

08s0808 08080808

L1

L2

K7,2

S0S1S2S3

Round 7

S0S1S2S3

S0S1S2S3S0S1S2S3

K7,1

08∆3∆40
8

08ρ0808 08ρρ08

08080808

08s0808

08ρρ08

08ρ0808

08∆50
808

08∆1∆20
8

08∆1∆20
8

Figure 5.9: The Impossible Differential Attack on 7-Round CHAIN-64
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(i) Given the remaining plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l).

compute g1(P, P̂) = f1(P)⊕ f1(P̂)⊕ f2(P)⊕ f2(P̂) such that f1(X) =

S0(S0(XL,0⊕XR,2⊕XR,3)⊕K0,2,0) and f2(X)= S1(S1(S0(XL,0⊕XR,2⊕
XR,3)⊕S1(XL,1⊕XR,0⊕XR,3)⊕XR,1)⊕K0,1,1). Discard those plaintext-

ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if g1(P, P̂) 6= 0.

(ii) Guess a value for K0,1,2 and perform the following sub-steps:

A) Given the remaining plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,

Ĉi,l), compute f3(P)⊕f3(P̂) where f3(X)=S2(S2(S1(XL,1⊕XR,0⊕
XR,3)⊕S2(XL,2⊕XR,0⊕XR,1)⊕XR,2)⊕K0,1,2). Then, discard those

plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if f3(P)⊕ f3(P̂)⊕
f1(P)⊕ f1(P̂) 6= 0.

B) Guess a value for K6,1,2 & K6,2,1 and perform the following sub-

steps (see Figure 5.10 for details):

L1

L2

K6,2

S0S1S2S3

08ρ0808

S0S1S2S3

S0S1S2S3S0S1S2S3

08∆1∆20
8

08∆3∆40
8 08∆50

808

Round 7

K6,1

08∆80
808

08(∆6 ⊕ ρ)(∆7 ⊕ ρ)08

08∆1∆20
8

08ρ0808

08∆6∆70
8

08ρρ08

(∆7 ⊕ ρ)08(∆6 ⊕ ρ)(∆6 ⊕∆7)

(∆7 ⊕ ρ)∆8(∆6 ⊕ ρ)(∆6 ⊕∆7)

Figure 5.10: 1-Round Decryption of Round 7 of CHAIN-64

I) Given the remaining plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,

Ĉi,l), compute g2(C,Ĉ) = f4(C)⊕ f4(Ĉ)⊕ f5(C)⊕ f5(Ĉ) where

f4(X)=S−1
2 (S−1

2 (XL,2)⊕K6,1,2) and f5(X)=S−1
1 (XR,1)⊕K6,2,1.

Discard those plaintext-ciphertext quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l) if
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g2(C,Ĉ) 6= 0.

II) Guess a value for K6,1,1. For each remaining plaintext-ciphertext

quartets (Pi, j, Ci, j, P̂i,l,Ĉi,l), compute f6(C)⊕ f6(Ĉ) such that

f6(X) = S−1
1 (S−1

1 (XL,1)⊕K6,1,1). If f6(C)⊕ f6(Ĉ) = f5(C)⊕
f5(Ĉ), then the guess of six subkey bytes (K0,1,1,K0,2,0,K0,1,2,

K6,1,2,K6,2,1 and K6,1,1) is wrong and thus can be filtered out.

Given a sufficient number of chosen plaintext-ciphertext pairs, all the wrong

subkey bytes will be discarded. Notice that different impossible characteristics can be

utilized to filter out the other wrong subkey bytes for Rounds 1 and 7. Once the round

subkeys K0 and K6 are successfully recovered, Rounds 1 and 7 of CHAIN-64 can be

removed and the same idea can be used to recover the remaining subkeys for Rounds

2 to 6.

5.5.2 (b) Attack Complexity

The attack requires 2φ ×248 chosen plaintexts. Step 1 has a time complexity of

2φ+48 7-round CHAIN-64 encryptions. For a structure of 248 chosen plaintexts, Step

1 has a memory complexity of 248× (6+ 8) bytes ≈ 251.81 bytes since two bytes of

all plaintexts are fixed to a certain value. The plaintext-ciphertext pairs are stored in a

table indexed by the ciphertext.

In Step 2(a), for a structure of 248 chosen plaintexts, a total of
(248

2

)
≈ 295 cho-

sen plaintext-ciphertext quartets can be generated. However, the expected remaining

chosen plaintext-ciphertext quartets in a structure is 295×2−24×2−40× 100
256 ≈ 229.64.

Notice that according to the difference distribution table, for the S-box S0, there are

expected 100 out of 256 possible non-zero input differences x such that S0(x) = y

for a fixed non-zero output difference y. Thus, the memory complexity of Step 2 is

229.64× (6+ 8+ 6+ 3) bytes ≈ 234.17 bytes since five bytes of both ciphertexts are

similar. Since there is a 65.36-bit filtering condition in Step 2 for the differences in the

plaintext-ciphertext quartet, thus Step 2 has a time complexity of about 229.64 memory
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accesses.

Next, we analyse Step 2(b) for a structure of 229.64 chosen plaintext-ciphertext

quartets. Since there exists 216 possible values of (K0,1,1,K0,2,0), Step 2(b)(i) requires

229.64× 216× (23 XOR + 12 S-box lookup) operations. Since 1-round CHAIN-64

encryption requires 3 rotations, 6 XOR and 16 S-box table lookup operations, thus we

consider the sum of 23 XOR and 12 S-box lookup operations equals 35
25 of the time

complexity of 1-round CHAIN-64 encryption. Step 2(b)(i) has a time complexity of

229.64× 216× 35/25
7 ≈ 243.32 7-round CHAIN-64 encryptions. The expected remain-

ing chosen plaintext-ciphertext quartets in a structure is 229.64× 2−8 = 221.64. Step

2(b)(ii)(A) requires 23 XOR and 12 S-box table lookup operations (which should be

less than
35
25

of the complexity of 1-round CHAIN-64 encryption) for each guess of 28

possible values of K0,1,2, thus it has a time complexity of 28×221.64× 35/25
7
≈ 227.32

7-round CHAIN-64 encryptions. The expected remaining chosen plaintext-ciphertext

quartets in a structure is 221.64× 2−8 = 213.64. Subsequently, Step 2(b)(ii)(B)(I) re-

quires 7 XOR and 6 inverse of S-box table lookup operations (which should be less

than
13
25

of the complexity of 1-round CHAIN-64 encryption) for each guess of 216 pos-

sible values of (K6,1,2,K6,2,1), thus it has a time complexity of 216×213.64× 13/25
7
≈

225.89 7-round CHAIN-64 encryptions. The expected remaining chosen plaintext-

ciphertext quartets in a structure is 213.64× 2−8 = 25.64. Finally, Step 2(b)(ii)(B)(II)

requires 6 XOR and 6 inverse of S-box table lookup operations (which should be less

than
12
25

of the complexity of 1-round CHAIN-64 encryption) for each guess of 28

possible values of K6,1,1, thus it has a time complexity of 28× 25.64× 12/25
7
≈ 29.78

7-round CHAIN-64 encryptions.

In total, the impossible attack has a time complexity of approximately 2φ+48+

2φ × (243.32 + 227.32 + 225.89 + 29.78) ≈ 2φ+48.06 7-round CHAIN-64 encryptions and

2φ+29.64 memory accesses.
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As mentioned in Section 3.3.3 (c), the question on how many memory accesses

(table lookups) are equivalent to one CHAIN-64 encryption in terms of time depends

closely on the used platform and CHAIN-64 implementation as well as the storage

location of the sorted table. In theoretical block cipher cryptanalysis, it is usually as-

sumed by default that a table is stored in an ideal place, RAM say, like an S-box table

and it takes an almost constant time to access an entry in a sorted table independent

of the number of entries. Thus, an extremely conservative estimate is that 7 memory

accesses equal a 7-round CHAIN-64 encryption in terms of time assuming that the F

function with a round subkey is precomputed in a table and is equivalent to one mem-

ory access by neglecting the computational complexity for the key schedule. Thus,

one round is equivalent to one memory access. As a consequence, the total time com-

plexity of the impossible differential attack is 2φ+48.06 + 2φ+29.64

7 ≈ 2φ+48.06 7-round

CHAIN-64 encryptions.

The attack succeeds if the expected number of subkey bytes that will not be

filtered out after performing the above attack procedure is less than 1 as one out

of the 248 possible values of (K0,1,1,K0,2,0,K0,1,2,K6,1,2,K6,2,1,K6,1,1) must be cor-

rect. In the beginning of Step 2(b)(ii)(B)(II), the expected remaining chosen plaintext-

ciphertext quartets in all the structures is 2φ+5.64. Observe that given any guess of

K6,1,1, the last condition is fulfilled with the probability of 2−8 and thus the proba-

bility that each of the 248 possible values of (K0,1,1,K0,2,0,K0,1,2,K6,1,2,K6,2,1,K6,1,1)

is filtered out using one of 2φ+5.64 possible chosen plaintext-ciphertext quartets is

2−8. It follows that the expected number of (K0,1,1,K0,2,0,K0,1,2,K6,1,2,K6,2,1,K6,1,1)

that will not be filtered out after performing the above attack procedure is 248 ×
(1− 2−8)2φ+5.64

. Thus, by letting φ = 7.42, only one of the 248 possible values of

(K0,1,1,K0,2,0,K0,1,2,K6,1,2,K6,2,1,K6,1,1) will remain and it must be the right subkey.

As a conclusion, the impossible differential attack has a time complexity of

2φ+48.06 = 255.48 7-round CHAIN-64 encryption, a memory complexity of 251.81 bytes

(which is dominated in Step 1) and a data complexity of 2φ+48 = 255.42 chosen plain-

texts.
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5.6 Summary

The CHAIN block cipher has a variable block length, a variable secret key

length and a variable number of rounds. It is a byte-oriented block cipher designed

by Peyravian and Coppersmith. In this chapter, we have described an r′-round im-

possible differential characteristic on CHAIN for a variable block length where r de-

notes the minimum number of rounds to thwart both differential and linear attacks and

r′ ∈ {r− 1,r} . Building on such r′-round impossible differential characteristics, we

have presented a generic impossible differential attack on (r′+ 2)-round CHAIN ci-

pher. To show the validity of our generic attack, we have presented two impossible

differential attacks using two concrete examples, i.e., 7-round CHAIN-64 and 8-round

CHAIN-128. This shows that the full CHAIN cipher is not as secure as claimed by

the designers. To the best of our knowledge, this is the first known cryptanalytic attack

against CHAIN.
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CHAPTER 6

GCM REVISITED

The Galois/counter mode is an authenticated encryption scheme recommended

by National Institute of Standards and Technology (NIST) and widely used in a num-

ber of well-known cryptographic protocols. GCM is an ISO standard. GCM is con-

structed by combining the counter mode encryption and the message authentication

code GMAC to provide both privacy and authenticity. GMAC can be used as a stand-

alone message authentication code. In this chapter, we analyse the security of GMAC

and GCM with respect to the forgery and distinguishing attacks. More precisely,

1. We generalise the set of weak key classes proposed by Saarinen in FSE 2012

to include all subsets of nonzero keys. Hence, we remove the condition on the

smoothness of 2n−1, where n denotes the block size, for the existence of weak

key classes.

2. By considering powers of suitable field elements and linearised polynomials,

we further exploit some specific weak key classes to present a universal forgery

attack on GMAC.

3. By invoking the birthday paradox arguments, we show that a chosen message

attack can be used to distinguish GMAC from a random function.

4. To relax the assumptions required in the universal forgery attack, we show that

we can utilise the uniqueness of the counter mode encryption to launch a known

ciphertext attack against GCM itself when the initial vector IV is restricted to 96

bits.

The first three attack techniques can be applied to other Wegman-Carter polynomial

message authentication codes.
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6.1 Introduction

6.1.1 Background

GCM for an n-bit block cipher E is by far the most widely deployed authenti-

cated encryption algorithm designed by McGrew and Viega (2005). GCM employs an

encrypt-then-MAC composition (Bellare & Namprempre, 2008) with the added spec-

ification that both encryption scheme and MAC use a same secret key K. In essence,

GCM uses the counter mode encryption (CTR) as it can be efficiently pipelined in

hardware implementation. As for authentication, GCM uses a polynomial hash over

a Galois field GF(2n) based on Wegman-Carter (1981) universal hashing. We refer to

this authentication component as GMAG, the partial authentication component, i.e.,

the polynomial hash, as GHASH and the GCM counter mode encryption as GCTR.

Apart from the exclusive-or operation, GCM is composed of two main oper-

ations, namely, block cipher encryption and multiplication in GF(2n). Theoretically,

the block cipher used in GCM can be of any size n ≥ 64. In practice, however, AES

block cipher (NIST, 2001) with a block size of 128-bit is often used. According to

the design specification of GCM, the same secret key K is used in all the block cipher

encryptions involved in generating the counter values as well as the authentication key

H for the authentication polynomial.

GCM was later standardised by NIST (Dworkin, 2007) and ISO (2009). When

paired with AES block cipher as the underlying block cipher, this resulting AES-GCM

combination became a replacement for dedicated HMAC (Bellare et al., 1996) in popu-

lar cryptographic protocols such as SSH (Igoe & Solinas, 2009), IPsec (Law & Solinas,

2007) and TLS (Salter, Rescorla, & Housley, 2009). GCM has been widely adopted

due to its efficiency and high performance. Thus, the security of GCM had been ex-

tensively examined by the cryptographic community.
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6.1.2 Related Work

The class of Wegman-Carter (1981) polynomials MACs had been widely stud-

ied by Bernstein (2005b, 2005a), Bierbrauer, Johansson, Kabatianskii, and Smeets

(1994), den Boer (1993) and Taylor (1994). Bernstein (2005b, 2005a) proved that the

security of such MACs is retained up to 2−n/2 authenticated messages. More precisely,

the security bounds for such MACs indicate that an n-bit tag provides 2−n/2 security

against forgery (Bernstein, 2005b; Sarkar, 2011).

Ferguson (2005) pointed out two inherent weaknesses in GMAC, especially

when short tags (that is, only a certain portion of the n-bit output) are considered. The

first weakness raises the probability of a successful forgery by exploiting the linear

behaviour of the authentication polynomial. The second weakness reveals the authen-

tication key once the attacker manages to create successful forgeries. Nonetheless,

these weaknesses do not lead to a violation of the claims of GCM security bounds. In

addition, since GCM uses the GHASH function to generate a pseudorandom 128-bit

starting value for GCTR (i.e., J0) when the size of the IV is not 96-bit, Ferguson ex-

plained briefly that one can expect a collision on the counter values after processing

about 264 blocks of data (due to the birthday paradox arguments). Such collisions can

then be exploited to recover the authentication key H, thereby resulting in a loss of all

authentication security.

From a different point of view, Joux (2006) showed how an adversary can

recover the authentication key H of GMAC with a chosen IV attack. More precisely,

given two authentication tags with the same IV , the sum of these two tags will cancel

out the term involving the IV and this leads to a simple polynomial equation for the

authentication key H. Thus, H can be recovered by solving this polynomial equation.

For the earlier draft of the NIST version on GCM (Dworkin, 2006), Joux pointed

out that we can easily select two different IV s that yield the same starting value for

GCTR. These two different IV s have sizes which are not equal to 96-bit. Observe that

a collision of the starting values will leak out the information of the authentication key

H too. Besides, Joux also explained the reason why GCM is insecure when an all zero
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IV is used. Once H is known, the attacker can easily construct an universal forgery

attack by replacing IV with an equivalent IV (i.e., an IV giving the same starting value).

We note that the attacks proposed by Joux were only applicable to the early draft of

the NIST version of GCM (Dworkin, 2006) and tweaks had been proposed in the final

version (Dworkin, 2007) to counter them.

In Crypto 2008, Handschuh and Preneel (2008) carried out a thorough analysis

on the security of universal hash function based MAC algorithms against key recovery

attacks. They extended the elegant attack proposed by Joux on modified GMAC. We

refer to this attack as “root attack". However, root attack is impractical due to the

requirement of a large number of tag verifications. In addition, the expected number

of multiplications performed by the verification oracle is about 2n. The weaknesses

are inherent to polynomial hashs over GF(2n) and not to the GCTR used in GCM.

The authors also presented birthday collision attacks on GMAC that required IV reuse

which violated the security assumptions of GCM.

In FSE 2012, Saarinen (2012) presented some nontrivial weak authentication

key classes (apart from the weak key H = 0 pointed out by the designers) in the case

where n = 128. They showed that such weak keys resulted in “cycling attacks” on

GMAC. Briefly, each of these weak authentication keys H has a small order in the

multiplicative group GF(2128)\{0}, say Hm = 1 for m < 2128−1. Since 2128−1 has

512 divisors, we can construct 512 relations of the form Hm + 1 = 0, and for each of

these relations, there are m different values of H satisfying it. Consequently, for each

divisor m of 2128−1, we can define Cm = {H : Hm = 1} which consists of m different

nonzero elements. A message can now be easily forged by swapping any two blocks

which are at a distance of m blocks apart.

More recently, Iwata, Ohashi, and Minematsu (2012) studied the security proofs

of GCM in Crypto 2012. They first pointed out that the counter collision lemma used

in proving the privacy and authenticity of GCM was invalid. They proved that the

probability of a counter collision is in fact greater than that claimed by the designers.
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This leads to a flaw in the security proofs of GCM given by the designers and thus the

claimed security bounds are not justified. Moreover, Iwata et al. proposed a simple dis-

tinguishing attack that invalidates the main part of GCM privacy proofs. However, the

success probability of the attack is insignificantly small and therefore, it hardly poses

any threat to the security bounds. Nonetheless, they took a step forward to repair the

original security proofs of GCM and concluded that the security bounds are larger than

previously claimed. Interestingly, they showed that GCM has better security bounds

when the length of IV is restricted to 96 bits.

6.1.3 Motivation and Contributions

This chapter seeks to analyse the security of GCM with respect to the forgeabil-

ity and distinguishability of the authentication component GMAC. Our contributions

are four-fold.

First, motivated by the notion of weak key classes proposed by Saarinen (2012),

we show in this present work that weak key classes of every size exist. More impor-

tantly, we show that weak key classes exist for any block size n, and hence, their

existence is independent of the smoothness of the multiplicative group order 2n− 1.

Furthermore, we falsify the claim by Saarinen that fields of sizes 2n, where 2n− 1

is prime or Sophie Germain prime fields should be used in the GCM construction to

minimise the number of weak keys.

Second, by partitioning all the nonzero authentication keys into certain spe-

cific weak key classes, we demonstrate how the root attack proposed by Handschuh

and Preneel (2008) can be adapted to launch a universal forgery attack on GMAC, a

stand-alone MAC. This is more powerful than the root attack which is essentially an

existential forgery attack.

Ideally, a secure MAC will behave like a pseudorandom function. For our

third contribution, we launch a chosen message attack to demonstrate that GMAC can

be distinguished from a random function using O(2n/2) tagging queries. We remark
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that our results do not invalidate the GCM security bound (Bernstein, 2005b; Mc-

Grew & Viega, 2005). Instead, we have shown that the bound given is tight. More

interestingly, the above weak key, forgery and distinguishing attacks can be applied

to other Wegman-Carter polynomial MACs (Bierbrauer et al., 1994; den Boer, 1993;

Taylor, 1994), Sophie Germain Counter Mode (Saarinen, 2012) and Poly1305-AES

(Bernstein, 2005a).

The universal forgery attack against GMAC requires an exhorbitant number of

verification queries and blocks of data. In fact, the total number of blocks of all the

queries for a successful attack is O(2n). Besides, a drawback of the universal forgery

attack (as well as the root attack) is its use of a fixed IV for all its verification queries,

a scenario which violates the security model of GCM. In order to reduce the total

number of blocks and to avoid a reuse of IV s, we observe that the secret key used

to generate the counter values for encryption as well as the starting value J0 used in

the generation of the tag is identical. In the design specification of GCM, i.e., when

n = 128, the starting value J0 depends on the size of the IV used. When the size of

the IV is not 96-bit, it is generated as the GHASH value with the IV as its input. As

commented by Ferguson, this allows us to apply the birthday attack to around 2n/2

blocks to find a repetition of the counter values, and this in turn leads to the recovery

of the authentication key H. As this attack does not apply when IV s with 96 bits are

used (since the starting values and counter values will be distinct when distinct IV s are

used), a natural question arises: Can we recover H using O(2n/2) blocks when GCM

is restricted to IV s with 96 bits? Recall that it was shown by Iwata et al. (2012) that

the security of GCM is more superior in this case.

For our final contribution in this chapter, we give an affirmative answer to this

question. Specifically, we consider the scenario in which the size of the IV is 96-bit

(a recommended choice in many standards) against the forgery attack on GCM (not

GMAC only). We show that the uniqueness property of the counter values leaks infor-

mation about the GHASH value, namely, it allows us to filter out the wrong GHASH

values. In this way, we can launch a known ciphertext attack using O(2n/2) tagging
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queries and O(2n/2) blocks to recover the correct value of H of GCM. Our results

are supported by both experimental and theoretical justifications. We believe that this

attack is interesting as it demonstrates that the GCM security bound is tight under

the practical assumptions that an IV with 96-bit is used and the reuse of IV s is not

permitted for both the tagging and verification queries. Instead of the approach under-

taken by existing analysis on the security of GCM which focuses on GMAC alone, we

adopt a different approach by taking into account both the counter mode encryption

and GMAC in our analysis.

Table 6.1 summarises the complexities of the various attacks in terms of the

total number of tagging queries made by the attacker, t, the total number of verifica-

tion queries made by the attacker, v, the maximum number of blocks of the longest

query made by the attacker, l and the total number of blocks in all queries, σ . For

concreteness, we consider an AES-paired GCM, that is, n = 128.

Organisation. The remainder of the chapter is organised as follows. In Section 6.2,

we briefly review the specification of GCM. Section 6.3 describes our generalisation

of weak key classes which were proposed by Saarinen (2012). Following this, we

present a modification of the existing existential forgery attack to result in a more

powerful universal forgery attack on GMAC in Section 6.4. By launching the chosen

message attack, Section 6.5 provides a simple distinguishing attack on GMAC using

2n/2 queries. To reduce the total number of blocks in a forgery attack, we present a

known ciphertext attack that exploits the uniqueness of the counter mode to recover

the authentication key H of GCM in Section 6.6. Finally, Section 6.7 concludes the

chapter.
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6.2 The Galois/Counter Mode (GCM)

Dworkin (2007) claimed that for an underlying approved block cipher, the

block size is 128 bits and the key size is at least 128 bits. GCM involves two main

algorithms, namely authenticated encryption and authenticated decryption. We ignore

the authenticated decryption since our attacks only focus on the authenticated encryp-

tion algorithm.

Given the selection of an approved block cipher and key, there are three input

strings to the authenticated encryption function:

• A plaintext P: |P| ≤ 239−256

• Additional authenticated data A: |A| ≤ 264−1

• Initial vector IV : 1≤ |IV | ≤ 264−1

Note that GCM protects the authenticity of the plaintext and the authenticated data.

Besides, GCM also protects the confidentiality of the plaintext while the authenticated

data is left in the clear.

Here are the two output strings to the authenticated encryption function:

• A ciphertext C: |C|= |P|

• An authentication tag T : |T |= 128,120,112,104 or 96

For simplicity, we let |T |= n, that is, no truncation, throughout the chapter.
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The authenticated encryption algorithm involves two major functions as fol-

lows:

1. The GCM counter mode encryption GCTR: the component to provide confiden-

tiality

2. The polynomial hash GHASH: the partial component for authentication

6.2.0 (a) GCTRK(P,J0)

Given a plaintext P, a starting value J0 and a secret key K, the ciphertext C is

constructed as follows:

• If P is the empty string, then return the empty string as C.

• Write P = P1||P2|| . . . ||Pm, where each Pi,1≤ i≤ m−1 is an n-bit block and Pm

is either a complete block or a nonempty partial block.

• For i = 1 to m, compute Ji = incr(J0). The function incr(·) treats the right-most

32 bits of its argument as a nonnegative integer and increments this value modulo

232. Mathematically, incr(F ||I) is F ||(I +1 mod 232).

• For i = 1 to m−1, compute Ci = Pi⊕EK(Ji).

• Compute Cm = Pm⊕MSB|Pm|(EK(Jm)).

• Generate C =C1||C2|| . . . ||Cm.

Figure 6.1 illustrates the GCTR function.
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J2 incr

EK

Jm−1 incr

EK

Jm

P2

C2

Pm−1

Cm−1

Pm

Cm

Figure 6.1: The GCTR Function

6.2.0 (b) GHASHK(M)

GHASH is constructed by means of operations in the finite field GF(2n). Given

a message M and a secret key K, the polynomial hash YM is constructed as follows:

• Derive the root authentication key H = EK(0).

• Write M = M1||M2|| . . . ||Mm, where each Mi,1≤ i≤ m is an n-bit block.

• Define YM = ∑
m
i=1 MiHm−i+1.

In addition, GHASH can be implemented using CBC-MAC approach (ISO, 2010).

Such approach is illustrated in Figure 6.2.

6.2.0 (c) GCM-Enc K(IV,P,A)

Given a plaintext P, an initial vector IV , an optional authenticated data A and a

secret key K, the ciphertext C and the authentication tag T are constructed as follows:

• If |IV |= 96, then let starting value J0 = IV ||031||1.

• If |IV | 6= 96, then let s= 128d|IV |/128e−|IV | and compute J0 = GHASHK(IV ||
0s+64||[|IV |]64).
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M1

·H

M2

·H

Mm

·H

YM

Figure 6.2: The Polynomial Hash GHASH

• Compute C = GCTRK(P,J0).

• Let u = 128d|C|/128e− |C| and let v = 128d|A|/128e− |A|.

• Compute the tag T = GHASHK(A||0v||C||0u||[|A|]64||[|C|]64)+EK(J0).

• Return (C,T ).

Remark: Suppose we have M = M1||M2|| . . . ||Mm as the input to GHASH. Define the

polynomial fM(t) = ∑
m
i=1 Mitm−i+1. Then fM(t) is a polynomial with variable t and

degree at most m and fM(0) = 0. Moreover, given two inputs M and M′ to GHASH, it

is clear that fM+M′(t) = fM(t)+ fM′(t). We observe that the tag TM corresponding to M

can be defined as TM = fM(H)+EK(J0) as well. This shows that TM is a polynomial-

evaluation hash with an additional unknown value. For simplicity, we denote the tag

generation function by GMAC.

6.3 Weak Keys for GMAC

In the case of GMAC, each secret key K will correspond to an authentication

key H (which is not necessarily unique). As such, with respect to the authentication

functionality, it suffices to consider weak authentication keys H instead of the weak

keys K. In the following, a weak key (see Section 2.1.3 (b) for details) will thus refer

to a weak authentication key.
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An obvious weak key, as pointed out by the designers, is the key H = 0 in

which the polynomial fM(t) evaluates to 0 for any message M. Thus, for any message

M, TM = EK(J0) for a fixed J0. Henceforth, we assume that H 6= 0.

Saarinen (2012) suggested that GCM (or GMAC) may yield more weak keys in

the case when n = 128 due to the smoothness of 2128−1, the order of the multiplicative

group comprising all nonzero elements of GF(2128). Specifically, for every divisor

m of 2128− 1, there exists a subgroup of GF(2128)\{0} of cardinality m. Then every

H in this subgroup satisfies Hm + 1 = 0. Thus, for all integers i ≥ 1,Hm+i +H i = 0.

Under this relation, it is straightforward to see that swapping two blocks in a message

M which are at a distance of m blocks apart will result in the same tag, thereby leading

to a successful forgery. Observe that M should have at least m+1 blocks for such an

attack. Saarinen termed this attack a cycling attack and short cycles result whenever H

has a small order m.

Thus, we can define the class S = {H : Hm = 1} which, according to Saarinen,

qualifies to be a weak key class due to the cycling attack just described. Moreover,

since the cardinality of S is exactly m, the probability of any H to be in the class is
m

2128−1 .

Following this line of argument, we now argue that for any m < 2n, there exists

a class S of keys satisfying the following conditions:

• For each H ∈ S and any message M with at least m+ 1 blocks, it is easy to

construct a message M′ such that TM = TM′ .

• S has m elements.

To this end, consider two distinct messages M and M′, each with m+1 blocks.

For a given J0, the tags TM and TM′ are equal if and only if fM(H)+EK(J0)= fM′(H)+

EK(J0). It follows that fM(H) = fM′(H) or equivalently, fM+M′(H) = 0. Denoting
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fM+M′(t) by g(t), we see that M and M′ share the same tag if and only if the key H is

a root of the polynomial g(t).

This observation motivates us to construct weak key classes as follows. First,

partition the set of nonzero elements of GF(2n) into l disjoint sets, each containing

around m elements. We claim that each set can be considered as a weak key class

according to the definition given above. Indeed, let S = {H1,H2, . . . ,Hm} be one of the

sets with m elements, where H1,H2, . . . ,Hm ∈ GF(2n)\{0}. Given a message M with

m+1 blocks, our aim is to construct another message M′ which shares the same tag as

M, that is, TM = TM′ , for any key Hi ∈ S. Hence, for each Hi ∈ S,Hi must be a root of

the polynomial g(t) = fM+M′(t).

In view of this, define g(t)= t ∏
m
i=1(t−Hi). Then for each j = 1, . . . ,m,g(H j)=

H j ∏
m
i=1(H j −Hi) = 0 so that H j is a root of g(t). By expanding g(t), we may ex-

press it as g(t) = ∑
m+1
i=1 citm−i+2. Note that each ci is a sum of powers of Hi and

are therefore elements of GF(2n). Given that M = M1||M2|| . . . ||Mm||Mm+1, let M′ =

M1+c1|| . . . ||Mm+cm||Mm+1+cm+1. Since fM′(t) = ∑
m+1
i=1 (Mi+ci)tm−i+2 = fM(t)+

g(t), fM+M′(t) = g(t). Consequently, for each H ∈ S, fM(H) = fM′(H) and this in turn

yields TM = TM′ .

Since the probability of a key lying in the set S is m
2n−1 , we conclude that S is

a weak key class satisfying the given two properties. Moreover, since the polynomial

fM+M′(t) can have at most m nonzero roots, it is not possible to construct a larger set

with more than m elements satisfying the given properties.

In fact, by observing that ∏H,Hm=1(t−H) = tm +1, we see that our approach

generalises the construction of weak key classes proposed by Saarinen (2012). For

our construction, we can select nonzero H1, . . . ,Hm arbitrarily. As a consequence,

generalising it this way removes the requirement for 2n−1 to be smooth as proposed

by Saarinen (2012), that is, our method applies to any block size. In particular, our

generalisation dismisses the suggestion proposed by Saarinen to select fields GF(2n),
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where 2n− 1 is a prime or Sophie Germain prime fields to minimise the threat of

cycling attacks.

We remark that this idea was already presented by Handschuh and Preneel

(2008) in which a forgery attack (which we refer to as the root attack) was given.

Here, we model it differently by viewing the keys to lie in a potential weak key class.

In this sense, we observe that all the nonzero keys H can be partitioned into distinct

weak key classes, thereby leading to the same forgery attack (Handschuh & Preneel,

2008).

It has been brought to our attention that Procter and Cid (2013) have inde-

pendently made the same observations with regards to general weak key classes as

what we have just presented. Specifically, in their paper, they considered the algebraic

structure underlying all polynomial hashes and argued that the aforementioned attacks

(Ferguson, 2005; Handschuh & Preneel, 2008; Saarinen, 2012) are a consequence of

this algebraic property. Inspired by this framework, they showed that almost all sub-

sets of keys can be viewed as weak key classes and exploited different subsets of keys

to mount forgery attacks to recover the key H. This slightly differs from the root attack

which performs an exhaustive search on the keys in a weak key class that produces a

successful forgery.

In this chapter, we exploit the weak key classes in a different way. In general,

the root attack is an existential forgery attack in which we can construct a different

message M′ sharing the same tag value as M. In the next section, we show that there

are weak key classes such that a universal forgery attack can be launched.

6.4 Universal Forgery on GMAC

Given an arbitrary message M, the probability of guessing its correct tag is

ideally equal to 2−n. In this section, we show that the probability is often much higher,

which in turn leads to a universal forgery attack with less than 2n verification queries.

More precisely, we show that the list of possible tags that M can take is less than 2n.
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Now, let M be a message with m blocks, say M =M1||M2|| . . . ||Mm. Let m′≤m

be a positive integer. We consider the following two cases.

Case 1: m′|(2n−1)

Let 2n− 1 = lm′. Since (Hm′)l = H2n−1 = 1, it follows that Hm′ is an ele-

ment of the subgroup of GF(2n)\{0} of order l. In particular, if g is a generator of

GF(2n)\{0}, then Hm′ = gim′ for some i = 1,2, . . . , l. Moreover, there are exactly m′

values of H satisfying Hm′ = gim′ for all i = 1, . . . , l.

Let f (t) = tm′ . Construct a message M′ = M1 +1||M2|| . . . ||Mm′ || . . . ||Mm. We

have TM′ = fM′(H)+EK(J0) = fM(H)+Hm′+EK(J0) = TM +Hm′ . Since there are l

possibilities for Hm′, we conclude that there are l corresponding possibilities for TM′ .

Case 2: m′ = 2k for some k < n

Fix k positions in {1,2, . . . ,n}. By considering the linear approach in (Ferguson,

2005), we can find a polynomial of the form f (t) = ∑
k
i=0 cit2i

such that for all H, f (H)

is 0 in each of the k positions. (Here, we assume that all the blocks of the message

are arbitrary so that we have (k+1)n variables to begin with). Such a polynomial f is

often known as a linearized polynomial. In particular, we can write f (H) = Gh, where

G is an n× n binary matrix with the zero rows in the k positions and h is a vector

representing H. Since k bits of f (H) are fixed, it follows easily that f (H) can assume

at most 2n−k possible values. Moreover, for each of these values a, the set of H for

which f (H) = a can be easily found by solving the matrix equation Gh= a. Hence,

we conclude that there are exactly 2n−k values of H satisfying each of these equations.

Define M′ = M1 + cm|| . . . ||Mm + c1, where cm′+1 = cm′+2 = . . .= cm = 0. Just

as in case 1, TM′ = TM + f (H) and hence, there are at most 2n−k possible tags for M′.

In both these cases, notice that we have TM′ = TM + f (H). This allows us to
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construct a universal forgery attack on GMAC as follows. Suppose that we wish to

obtain the tag for a message M = M1|| . . . ||Mm.

• Let k be the largest integer such that m ≥ 2k and let k′ be the largest integer not

exceeding m with k′|(2n−1).

• Define m′ = max(2k,k′).

• If m′= k′, construct M′ as in case 1 above and set T = {gm′,g2m′, . . . ,g2n−1−m′,1}.

• Otherwise, fix k positions in {1, . . . ,n} and let M′ as in case 2 above. Set T to

comprise all the n-bit strings with 0 in the k positions.

• For a fixed IV , obtain the tag TM′ of M′ through the tag generation oracle.

• For each R ∈ T, send TM′+R as the tag of M to the verifier.

According to our preceding analysis, we require at most 2n−1
m′ tag generations

and verifications to forge a valid tag for M. Furthermore, once a forgery is obtained,

say TM = TM′ + R, the possible values of H is now reduced to the m′ roots of the

polynomial equation f (t) = R. Since these m′ roots can be easily determined, the

value of H can be recovered by testing each possible root in turn.

Note that Case 1 is more applicable when 2n−1 has many divisors, that is, it is

smooth, while Case 2 applies for any block size n. In this attack, the same IV is used

for all the verifications.

6.5 Distinguishing Attack on GMAC

In this section, we highlight an interesting observation on the GCM authenti-

cation component inspired by the chosen message attack technique, namely, we show

that making O(2n/2) tag queries will enable us to distinguish the GMAC from a random

function with a message of arbitrary length and an IV as inputs and an n-bit output.
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We assume that the attacker is given a tag generation oracle and the attacker

can request any tag for any messages of his choice. Besides, our distinguishing attack

does not require IV reuse. Our distinguishing attack is very simple and makes use of

the fact that the underlying block cipher is a bijection.

To be precise, the attacker can request 2n/2 (or 2(n+1)/2 respectively) distinct

tags for the same message M. Let TM = fM(H) +EK(IV ). If we fix the message

M, fM(H) will be identical in all these tags. Since the block cipher is a bijection,

the values of EK(IV ) will be distinct whenever different IV s are used. As such, the

resulting tags will all be distinct.

On the other hand, for a random function which takes in two inputs (a message

M and an IV ) and outputs an n-bit string, the birthday paradox arguments indicate that

a collision will take place after 2n/2 (or 2(n+1)/2 respectively) queries (here, M is fixed

and we vary IV ) with a probability of 0.39 (or 0.63 respectively). In this way, we see

that GMAC violates the expected behaviour of a random function since all the tags

will be distinct. Hence, after O(2n/2) queries, GMAC can be correctly distinguished

from a random function with a high probability.

Note that this distinguishing attack is applicable on GMAC and other Wegman-

Carter polynomial MACs, but is not applicable on GCM (includes both GCTR and

GMAC). This is because in GCM, the attacker does not has any control on the cipher-

texts where the attacker cannot obtain distinct tags for the same ciphertext through the

GCM encryption oracle.

6.6 Known Ciphertext Attack on GCM

For the universal forgery attack presented as well as the root attack, it is evident

that a large number of verification queries and blocks of data are needed. Indeed, as

the specification of GCM restricts the number of blocks of a data (i.e., concatenation

of ciphertext C and additional authenticated data A) to be within around 232 ·257 = 289

blocks, it follows that the total number of verification queries is O(239) which is cer-
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tainly too huge to make the attack feasible. This is particularly true with “throttling",

where the number of verifications is limited to a small number of queries. In any

case, for any block size n, the total number of blocks involved in all the queries for a

successful forgery is O(2n), resulting in around 2n field multiplications.

More importantly, as we have remarked in Section 6.4, the universal forgery

attack requires the reuse of the same IV for all the verifications. This violates the

standard security model of GCM (McGrew & Viega, 2005) which prohibits the reuse

of an IV for both the tag generation and tag verification oracles.

In order to bypass this issue and to achieve a reduction in the number of veri-

fications and the number of blocks, we attempt to exploit the reuse of the secret K in

deriving the starting value J0 as well as the counter values for the encryption. Through-

out this section, we restrict our analysis to the specification of GCM (not GMAC alone)

described in Section 6.2.

Recall that the starting value J0 is defined differently for |IV | = 96-bit and

|IV | 6= 96-bit. In the latter case, J0 is constructed as the pseudorandom 128-bit output

of GHASH with IV as its input. Therefore, two different IV s may produce the same J0

value and in particular, due to the birthday paradox, we can expect such a collision to

occur with O(2n/2) queries, with a distinct IV for each query. This attack was already

mentioned by Ferguson (2005).

As for a 96-bit IV, J0 is the concatenation of IV with a 32-bit string 0311.

Hence, for distinct IV s IV (1), IV (2), . . . , IV (k),k ≤ 296, the bijection property of the

encryption operation implies that the following observations hold true.

(1) All the encrypted values EK(J0(1)),EK(J0(2)), . . . ,EK(J0(k)) are distinct;

(2) For any i = 1, . . . ,k, all the counter values EK(J1(i)),EK(J2(i)), . . . ,EK(Jm(i))

are distinct (as long as m < 232) and none of these values is equal to EK(J0( j))
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for any j = 1, . . . ,k.

To achieve interoperability, efficiency and simplicity, the use of a 96-bit IV is

encouraged in (Dworkin, 2007). As such, we can expect that most of the real world

applications of GCM specify a 96-bit IV as a standard. Therefore, we concentrate

our analysis on this case for the rest of this section. Specifically, we show that the

observations of J0 and the counter values highlighted above will enable us to recover

H using O(2n/2) tagging queries and blocks.

To this end, let C be a ciphertext with m blocks and let C′ be the input to

the polynomial hash GHASH (here, C′ will have m+ 1 blocks). For a fixed IV, let

J0 = IV ||0311. Then the tag is TC = fC′(H)+EK(J0). In particular, if C = 0 is a one-bit

message, it follows from the specification of GHASH that fC′(H) = H or equivalently,

TC = H +EK(J0). By Observation (2), EK(J0) is distinct from EK(J1),EK(J2), . . . ,

EK(Jm). We claim that fC′(H) 6= TC +EK(Ji), i = 1, . . . ,m. Indeed, if equality holds,

that is, fC′(H) = TC +EK(Ji) for some i = 1, . . . ,m, then EK(J0) = TC + fC′(H) =

EK(Ji), contradicting Observation (2). Moreover, given a different starting value J′0

with counter values J′1,J
′
2, . . . ,J

′
m, the same argument yields fC′(H) 6= TC +EK(J′i) for

all i = 1, . . . ,k.

The preceding arguments enable us to launch a known ciphertext attack to re-

cover H, which we now describe.

• Let F be the set of all n-bit strings.

• Fix a positive integer k which will be specified later.

• Let IV (1), IV (2), . . . , IV (2k) be 2k distinct IVs.

• Let P be a random one-bit message.

• For i = 1, . . . ,2k, query the encryption oracle with inputs (P, IV (i)). Since the

block cipher is assumed to be random, it can be expected that k of the corre-
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sponding one-bit ciphertexts have a value of 0. Record down the tags of these

ciphertexts and label them as T1, . . . ,Tk.

• Now, let IV (1)′, . . . , IV (k)′ be another k distinct IVs.

• Let P′ be a random one-block message.

• For i = 1, . . . ,k, query the encryption oracle with inputs (P′, IV (i)′) to obtain the

ciphertexts C′1, . . . ,C
′
k.

• Observe that the encrypted counter values EK(J1(i)′) for i = 1, . . . ,k, can be

computed as EK(J1(i)′) = P′+C′i .

• For i, j = 1, . . . ,k, remove Ti +EK(J1( j)′) from F .

According to our procedure, for each i, j = 1, . . . ,k,Ti +EK(J1( j)′) = H +

EK(J0(i))+EK(J1( j)′) cannot be the correct value for H. Thus, with each new query

made, wrong candidates of H can be filtered out.

It now remains to find the number of queries needed to filter out all the wrong

candidates of H. Let A = {T1, . . . ,Tk} and B = {EK(J1(1))′), . . . ,EK(J1(k)′)}. Note

that A and B each contains k distinct random elements. Our task is to find the smallest

value of k for which the set D = {a+b : a ∈ A,b ∈ B} covers almost all of F .

The following lemma is useful to find the smallest value of k.

Lemma 6.1. Let A and B be two random sets of k n-bit strings. For each n-bit string

z, the probability that there exists a ∈ A and b ∈ B such that z = a+b is 1− e−k2/2n
.

Proof. Fix a z∈GF(2n). Observe that there exists a∈A and b∈B with a+b= z if and

only if the sets A and B+z= {b+z : b∈B} intersect. The proof of the birthday paradox

shows that the probability of selecting a set with k distinct elements is e−k2/2n+1
. Hence,

it follows that the probability of selecting two sets A and B+ z, each having k distinct

elements is (e−k2/2n+1
)2 = e−k2/2n

. On the other hand, the probability of selecting two
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sets A and B+ z, each having k distinct elements and A∩ (B+ z) = /0, is e−4k2/2n+1

=

e−k2/2n−1
(since it is the same as selecting 2k distinct elements). Consequently, the

probability for the two sets A and B+ z to intersect is e−k2/2n−e−k2/2n−1

e−k2/2n = 1−e−k2/2n
, as

desired.

Since Lemma 6.1 holds for any arbitrary z, it follows that the expected size of

A+B is (1−e−k2/2n
)2n. In particular, if k = 2n/2+2, the size of A+B is approximately

2n. Figure 6.3 represents the theoretical proportion of the size of Set D for different

values of k. We therefore conclude that if k ≈ 2n/2+2,H will be recovered. Further,

since P and P′ are one-block messages, a total of around 3k tagging queries are made

with a total of 3k blocks involved in all the queries.

Figure 6.3: The Theoretical Proportion of the Size of Set D for Different Values
of k

To confirm our results, we perform some experiments to find the size of A+B

for different values of k. We describe the steps of our experiments as follows:
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Figure 6.4: The Average Proportion of the Size of Set D for Different Values of k

• Choose k different random n-bit values for Set A.

• Choose k different random n-bit values for Set B. Note that the elements in Set

A and Set B may be the same.

• Add each element in Set A with each element in Set B. Record down the sum in

Set D.

• Find the size of Set D.

• Compute |D|/2n.

Due to the computational complexity, we run the experiments 1000 times with

the parameter n = 16,20,24 and k = {2n/2,2n/2−1.75,2n/2−1.5, . . . ,2n/2+1.75,2n/2+2}.
Figure 6.4 presents the average proportion of the size of Set D for different values

of k. Observe that our experimental evidence tallies with the theoretical results. In

particular, all the n-bit strings are covered with k = 2n/2+2 queries.
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Observe that in our procedure, O(2n) XOR operations are performed. This is in

contrast to the O(2n) multiplications required in the root attack and the 2n block cipher

calls required in the brute-force attack. Note that one AES block cipher call requires

160 cycles (Hämäläinen, Alho, Hännikäinen, & Hämäläinen, 2006) while one XOR

operation is 80 times faster than one AES block cipher call if we expect each XOR op-

eration requires 2 cycles. Notice that the similar technique had been used in (McGrew,

2012)1. McGrew named this technique as impossible plaintext cryptanalysis which

can recover information encrypted with the counter mode encryption.

6.7 Summary

In this chapter, we generalised the weak key classes for GMAC and showed

that the weak key classes are not limited by the smoothness of 2n−1. This method can

be applied to any block size and thus we falsified the suggestion proposed by Saarinen

that binary fields GF(2n) with prime 2n−1 or Sophie Germain prime fields should be

used in constructions of this type to minimise the total number of weak keys. Subse-

quently, we presented an even more powerful universal forgery attack against GMAC

by considering powers of suitable field elements and linearized polynomials. To relax

the assumptions required in the universal forgery attack against GMAC, we exploited

the uniqueness of the counter mode encryption and the bijection property of the under-

lying block cipher in GCM to recover the authentication key. This attack is applicable

to GCM when GCM is used with the recommended 96-bit IV . To the best of our

knowledge, this is the first attack when 96-bit IV s are considered. More interestingly,

the idea underlying this known ciphertext attack can be extended to launch a distin-

guishing attack on GMAC and other Wegman-Carter polynomial MACs.

We believe that our analysis via the attacks lead to a better understanding of the

security of GMAC and GCM. Similar to the previously proposed attacks, our attacks

did not break the security bounds of GCM (McGrew & Viega, 2005; Iwata et al., 2012).

Rather, we provided explicit attacks which achieve these bounds in some instances

1This work was accepted and presented in FSE 2013, however it was unknown to us that this work
was not included in the final proceedings of FSE 2013
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with better complexities or are more powerful than the previous attacks.

In order to prevent the above attacks, an obvious countermeasure is to limit

the number of blocks that can be processed by a single key to less than 2n/2 blocks.

Besides, the attacks become impractical when n is much greater than 64 due to the

large data complexity involved. Thus, a block cipher with a block size of 128 bits (and

larger block size to face future challenges) is recommended to pair with GCM. Finally,

the user is not recommended to change the key randomly for more than 2n/2 times as

this might lead to the key collision with high probability due to birthday paradox.
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CHAPTER 7

PMAC REVISITED

Parallelisable MAC (PMAC) is a part of the OCB mode which is an ISO stan-

dard. PMAC was proposed by Black and Rogaway in EUROCRYPT 2002. It is rel-

atively efficient when a parallel environment is possible. This parallelism is achieved

via constant multiplications in the underlying finite field. In order to yield a better

solution, Rogaway refined PMAC in ASIACRYPT 2004 by using a powering-up con-

struction to generate the constants. This is in contrast to the first design that uses

successive words of the gray code to generate the constants. In this chapter, we anal-

yse how some unique characteristics of these constants result in weaknesses of the

respective PMAC designs against forgery attacks in different ways. Thus, our analysis

highlights some pitfalls that designers should be mindful of when designing schemes

which exploit such constants.

7.1 Introduction

MACs can be constructed based on cryptographic hash functions (e.g., HMAC

(Bellare et al., 1996)), block ciphers (e.g., CBC-MAC (ISO, 2010), XCBC (Black &

Rogaway, 2000), TMAC (Kurosawa & Iwata, 2003) and OMAC (Iwata & Kurosawa,

2003)) or even universal hash functions (e.g., MMH (Halevi & Krawczyk, 1997) and

UMAC (Black et al., 1996)). Among these MAC schemes, CBC-MAC and HMAC are

the most popular. However, these two schemes share a common characteristic of being

inherently sequential where one can only process the i-th message block after all the

previous message blocks have been processed.

To counter this bottleneck, Black and Rogaway (2001, 2002) proposed a prov-

ably secure and parallelisable MAC (PMAC) scheme based on block ciphers. More

precisely, Black and Rogaway proved that PMAC approximates a random function as
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long as the underlying n-bit block cipher is a pseudorandom permutation, where n is

the size of the block cipher. PMAC was proposed in response to the call of NIST for

contributions for the first mode of operation workshop. In ASIACRYPT 2004, Ro-

gaway (2004) proposed the use of a tweakable block cipher for MACs and refined

PMAC to yield a more efficient PMAC which uses a powering-up construction for

the sequence of constants involved. We refer to the two different versions as PMAC1

(Black & Rogaway, 2001, 2002) and PMAC2 (Rogaway, 2004) throughout this chap-

ter.

For the design of PMACs, the parallelism is achieved at the expense of an extra

constant multiplication in the underlying finite field GF(2n). The distinction between

these two variations of PMACs lies in the definition (or generation) of the constants

involved. More precisely, PMAC1 uses successive words in a gray code to construct

the constants such that two consecutive constants differ in exactly one bit (so the Ham-

ming distance is 1). On the other hand, PMAC2 uses an easier-to-compute sequence

of constants comprising x1,x2, . . . ,x2n−1 based on the squaring operation. These con-

stants are then multiplied with a certain point L ∈ GF(2n) to form the corresponding

masks for the blocks. Since it is computationally efficient to multiply a point by x (re-

quiring only a shift and/or an addition), PMAC2 gives rise to a relatively more efficient

MAC scheme.

7.1.1 Related Work

Even though PMAC1 had been proposed since 2001, there was no known

cryptanalytic result on the PMACs that quantifies the number of message queries (i.e.,

number of (message, tag) pairs observed) with which a forgery attack can be performed

until C. Lee, Kim, Sung, Hong, and Lee (2006) took a first step in analysing the se-

curity of PMAC1. They showed how forgery attacks on PMAC1 can be devised, both

with truncation (i.e., a tag is truncated to a certain value before being generated) and

without truncation (i.e., the length of a tag equals the block size, n).
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For PMAC1 without truncation, an attacker first obtains the tags for 2n/2+1

different messages. Using the birthday paradox arguments, we can expect to find the

collision of two tags between two different messages with a probability of 0.63. The

attacker can then exploit this collision to find out certain information on the key and

thus forge a tag for a new message which does not belong to the earlier set of 2n/2+1

selected messages.

A similar forgery attack can be carried out in case truncation of the tags is

specified. By truncation, we mean that the final tag comprises only the first τ bits

of the n-bit output, where τ < n. Once again, an attacker will request the tags of

2n/2+1 different messages. We can then expect at least 2n−τ of these messages to share

the same tag with a probability of 0.63 according to the birthday paradox. However,

since collision only applies to the first τ bits (rather than the entire output), additional

computations on these 2n−τ messages need to be performed in order to extract useful

information to forge other valid tags.

In both these scenarios, we see that the attacker can launch a successful forgery

attack with 2n/2+1 message queries with the success rate of 0.63 due to the birth-

day paradox. Black and Rogaway (2002) proved that the security bound of PMAC1

was (σ+1)2

2n−1 where σ is the total number of message blocks in all q queries made by

the attacker. Nandi and Mandal (2008) provided an improved bound of PMAC1 as
5qσ−3.5q2

2n . We remark that the attack given by C. Lee et al. does not contradict the

security bounds given by Black and Rogaway (2002) and Nandi and Mandal (2008) as

the complexity or amount of resources needed by this attack, namely O(2n/2) queries,

tallies with their bound. Instead, it provides an explicit attack which proves the tight-

ness of their bound. Moreover, note that the key recovery attack on the underlying

block cipher proposed by C. Lee et al. (2006) is merely an exhaustive key search at-

tack.
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7.1.2 Motivation and Contributions

Given any MAC with an n-bit tag, exploiting the birthday paradox arguments

will, with a high probability, lead to a collision of the tags of at least two different

messages after O(2n/2) (the birthday bound) queries. More importantly, the birthday

bound is the security benchmark for all of XCBC, TMAC and OMAC, that is, attacks

exist for all of these MACs after obtaining around 2n/2 (message, tag) pairs. Thus,

forgery attacks requiring O(2n/2) queries cannot be treated as a weakness of MAC

schemes. In fact, in real world practical applications, it is not feasible for the attacker

to obtain O(2n/2) (message, tag) pairs authenticated with the same key especially if n

is much greater than 64.

In order to achieve parallelism, both PMAC1 and PMAC2 employ two different

methods to generate the constants. In this chapter, we seek to analyse the effect of the

constants on the resilience of the PMAC schemes against forgery attacks. In particular,

we present weaknesses of the two PMAC schemes arising from some special properties

of the constants which will in turn result in greater forgeability of the schemes. Thus,

some extra precautions need to be considered when different methods to generate the

constants are used. We also emphasise that our attacks exploit the structural properties

of PMAC schemes.

For PMAC1, we show that the use of the gray code to generate the constants

renders the scheme less random in the following sense: There exists a message M such

that the probability of forging a different message having the same tag is higher than

2−n. More significantly, this probability is greater for messages with more message

blocks. Observe that in the security proof given by Black and Rogaway (2002, Proof

of Lemma 2, Case(D3,D5)), the authors claimed that any two random messages, ir-

respective of their number of message blocks, will have equal tags with a probability

of 1/2n. However, it follows from our explicit construction that there exist messages

sharing the same tag with a much higher probability. This observation motivates us to

launch a general birthday attack on PMAC1 which requires fewer than 2n/2 queries.

In particular, our attack works for messages of varying number of blocks, namely, 2k
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blocks with k > 2, and exploits an internal collision of the final inputs to a block cipher

for two different messages to recover information on the key. We also present a way

to extend the attack to yield a more powerful almost universal forgery attack using the

recovered information on the key.

In addition, we show that three message queries are sufficient to forge a mes-

sage for PMAC2. The possibility of such a small number of queries for an attack

certainly merits our attention as it requires far fewer queries than that suggested by

the birthday attack. We thus further explore the feasibility of our attack by investi-

gating the total number of message blocks in our queries. We show that this number

of message blocks is influenced by the choice of the irreducible polynomial used in

defining the finite field GF(2n). In particular, the number of message blocks in the

messages may go below 2n/2 (breaks the security bounds given by Rogaway (2004)

and Minematsu and Matsushima (2007)) for PMAC2 if a bad irreducible polynomial

is used. Notice that the security bound of PMAC2 proved by Rogaway (2004) is 5.5σ2

2n

while Minematsu and Matsushima (2007) gave an improved bound as 5lq2

2n−2l where l is

the maximum number of message blocks of the longest query made by the attacker.

Rogaway (2004) had pointed out the need to check for certain parameters when

selecting an irreducible polynomial. More precisely, the designer suggested that one

can use discrete-log calculations to help choose and verify that a given choice of pa-

rameters1 (i.e., irreducible polynomial, base and indices) provides a unique representa-

tion of the constants. In this chapter, we emphasise the importance of performing these

verifications by showing the existence of irreducible polynomials in which the unique

representation fails for around 2n/2 blocks. Further, we provide an explicit forgery

attack to demonstrate why repetitions of the constants pose a threat.

These possible security threats against PMACs becomes more important es-

pecially when block ciphers (e.g., HIGHT (D. Hong et al., 2006) and PRESENT

(Bogdanov et al., 2007)) with a 64-bit block size remain widely used in practice.

1Refer to (Rogaway, 2004) for more details
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Organisation. The remainder of the chapter is organised as follows. In Section 7.2,

we present the specifications of PMAC1 and PMAC2 in detail. We also show our ob-

servations on the structure of the gray code. In Section 7.3, we exploit the structure of

the gray code to increase the forgery probability of a message and thereby, construct

some forgery attacks against PMAC1. We then present a chosen message attack on

PMAC2 in Section 7.4 by forging a tag for a specific message that requires only three

queries. To study the feasibility of this attack, we investigate the effect of our choice of

irreducible polynomials on the total number of message blocks in our queries. In Sec-

tion 7.5, we discuss the implications of our observations and results. Finally, Section

7.6 concludes the chapter.

7.2 The Parallelisable MAC (PMAC)

In the design of both PMAC1 and PMAC2, operations in the Galois field

GF(2n) are involved. These fields are constructed as the quotient of the ring GF(2)[x]

modulo the ideal generated by a fixed monic irreducible polynomial pn(x) of degree

n with binary coefficients. In other words, all elements of GF(2n) are polynomial ex-

pressions of the form a0 + a1x+ . . .+ an−1xn−1 where a0, . . . ,an−1 ∈ GF(2) and all

operations are carried out modulo pn(x). By viewing two binary n-bit strings as ele-

ments of GF(2n), the result of their product (as an n-bit binary string) will therefore

depend on the polynomial pn(x) that defines GF(2n). For the design of PMAC, Rog-

away (2002) chose the lexicographically first polynomial among the irreducible degree

n polynomials having a minimum number of coefficients. Here is the list of irreducible

polynomials suggested for some parameters of n:

• For n = 64, p64(x) = x64 + x4 + x3 + x+1.

• For n = 96, p96(x) = x96 + x10 + x9 + x6 +1.

• For n = 128, p128(x) = x128 + x7 + x2 + x+1.

• For n = 160, p160(x) = x160 + x5 + x3 + x2 +1.
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The general structure of the PMAC schemes consists of three algorithms as

depicted in Figure 7.1:

EK pad

c1 · L

X[1]

Y [1]

c2 · L

X[2]

Y [2]

cm−1 · L

X[m− 1]

Y [m− 1]

M [1] M [2] M [m− 1] M [m]

∑

X[m]

TM = first τ bits

}c · L if |M [m]| < n
c′ · L if |M [m]| = n

EK EK

EK

Figure 7.1: Overall Structure of PMAC

1. KeyGen :

• Choose a secret key K ∈K randomly for a block cipher E .

• Share the secret key K between a sender and a receiver.

• Both parties compute L = EK(0n), where L denotes the encryption of the

message with the value 0 using a block cipher E with the key K.

2. Tag : Given a message M, let m = d|M|/ne, where m denotes the number of

message blocks in the message M .
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• If |M|> n2n, return 0τ .

• Partition M into M[1]|| . . . ||M[m].

• For i = 1 to m−1, do:

– Compute X [i] = M[i]⊕ ci ·L.

– Compute Y [i] = EK(X [i]).

• Compute ∑ = Y [1]⊕Y [2]⊕·· ·⊕Y [m−1]⊕pad(M[m]).

• If |M[m]|< n, compute X [m] = ∑⊕c ·L.

• If |M[m]|= n, compute X [m] = ∑⊕c′ ·L.

• Output first τ bits of TM = EK(X [m]).

3. Verify : Given a (M,TM) pair, do the following:

• Generate the tag T ′M of M using the Tag algorithm.

• If T ′M = TM, output 1 to indicate the message M as authentic.

• If T ′M 6= TM, output 0 to indicate the message M as inauthentic.

For simplicity, we let τ = n in this chapter, that is, we mainly consider the case

where no truncation is performed. Here, c1, . . . ,cm−1,c and c′ refer to constants which

we are going to describe in detail.

7.2.1 The Generation of Constants for PMAC1

For PMAC1, the sequence of constants is generated by successive nonzero

words of the gray code. Specifically, define c0 = 0n and c1 = 0n−11. For 2≤ i≤ 2n−1,

ci = ci−1⊕ (0n−11≪ ntz(i)). We summarise some basic properties of the constants

c1, . . . ,c2n−1 below. For more properties of the gray code, refer to Black and Rogaway

(2002).

(i) c1, . . . ,c2n−1 are all distinct and nonzero.

(ii) The Hamming distance of ci−1 and ci is 1, where 1≤ i≤ 2n−1.
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(iii) As an integer, ci < 2i for 1≤ i≤ 2n−1.

An alternative way to construct the words of a gray code of length n is as

follows:

• Let c0 = 0n and c1 = 0n−11.

• For i = 1,2, . . . ,n−1, j = 1,2, . . . ,2i, define c2i+ j−1 = c2i− j⊕ (0n−11≪ i).

As an example, c2 = c1⊕0n−210 = 0n−211, c3 = c0⊕0n−210 = 0n−210, c4 =

c3⊕ 0n−3100 = 0n−3110, and so on. Hence, we see from this definition that only the

least significant bit of c0 and c1 can be nonzero while only the 2 least significant bits

of c0,c1,c2,c3 can be nonzero. In general, since the strings c2i,c2i+1, . . . ,c2i+1−1 are

obtained by changing the bit i (let string a = an−1an−2 . . .a1a0 ∈ {0,1}n, then bit i of a

refers to ai) of c2i−1, . . . ,c0, respectively, from a 0 to a 1, it follows that for any positive

integer i with i ≤ n, only the i least significant bits of c0,c1, . . . ,c2i−1 can be nonzero.

Hence, when these strings are viewed as the coefficients of the binary representation

of integers, each of these integers is less than 2i. Since there are exactly 2i nonnegative

integers less than 2i and all these strings are distinct, we conclude that c0,c1, . . . ,c2i−1

comprise all the n-bit binary strings with 0 in all the n− i most significant bits. This

leads us to the following theorem.

Theorem 7.1. For a positive integer k ≤ n, let Ck = {c0,c1, . . . ,c2k−1} and let C′k =

{c2k ,c2k+1, . . . ,c2k+1−1}.

(i) Fix an a ∈ Ck. Then the function f given by f (y) = y⊕ a for all y ∈ Ck is a

bijection from Ck to Ck. In particular, the sequence c0⊕ a,c1⊕ a, . . . ,c2k−1⊕ a

is a rearrangement of the words in the sequence c0,c1, . . . ,c2k−1.

(ii) Fix an a ∈ C′k. Then the function g given by g(y) = y⊕ a for all y ∈ Ck is a

bijection from Ck to C′k. In other words, the sequence c0⊕a,c1⊕a, . . . ,c2k−1⊕a,

is a rearrangement of the sequence c2k ,c2k+1, . . . ,c2k+1−1.
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Proof. (i) For any y ∈Ck, the n− k most significant bits of y and a are 0 and thus, the

n− k most significant bits of y⊕a must be 0. It follows from the preceding paragraph

that y⊕a ∈Ck so that f is a function from Ck to Ck. Since f (y) = f (y′) if and only if

y⊕a = y′⊕a if and only if y = y′, f is injective. Consequently, f must be a bijection

from Ck to Ck.

(ii) Let y ∈ Ck. Then y = 0n−kz and a = 0n−k−11z′ for some k-bit strings z and z′.

Thus, y⊕ a = 0n−k−11z′′, where z′′ = z⊕ z′. We have y⊕ a ∈ Ck+1 but y⊕ a 6∈ Ck.

Hence, y⊕a ∈C′k and g is a function from Ck to C′k. Similar to the proof in (i), g is a

bijection.

Observe that the constants c1, . . . ,cm−1,m ≤ 2n, are defined as binary strings

which are independent of the choice of the irreducible polynomial used in the construc-

tion of GF(2n). However, the binary strings representing the masks c1 ·L, . . . ,cm−1 ·L
may differ according to the polynomial being used. Further details on gray code and

ci ·L computations can be found in (Black & Rogaway, 2002).

Finally, we take c = 0 and c′ = x−1 for PMAC1. It is useful to note that these

two constants do not depend on m.

7.2.2 The Generation of Constants for PMAC2

The constants for PMAC2 are generated using the powering-up construction.

Specifically, define ci = xi where 1≤ i≤ 2n−1. It is easy to see that for each i,1≤ i≤
m−1,X [i] = M[i]⊕xi ·L. Thus, if a primitive polynomial pn(x) is used in constructing

GF(2n), then x will be a generator of the cyclic group of nonzero elements of GF(2n)

so that all the constants x, . . . ,x2n−1 are distinct. Notice that in this case, both the

constants ci and the masks ci ·L may differ when different irreducible polynomials are

used in constructing GF(2n). For PMAC2, c = xm(x2 +1) and c′ = xm(x+1). Hence,

unlike PMAC1, these constants are defined based on the number of message blocks in

a message, m.
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7.3 On the Security of PMAC1

In this section, we present some weaknesses of PMAC1 against forgery attacks.

Specifically, we show in Section 7.3.1 that the structure of the gray code leads to an

increased forgery probability for certain messages. Black and Rogaway (2002, Proof

of Lemma 2, Case(D3,D5)) claimed that given two messages M and M′, the probability

such that ∑M = ∑M′ is 2−n, where ∑M and ∑M′ represent the output ∑ in the tag

generation algorithm for M and M′, respectively. We show that this is not necessarily

the case and in fact, there exist messages M and M′ for which the probability is much

higher. By exploiting this observation, we present a general birthday attack on PMAC1

in Section 7.3.2. Our birthday attack is more general than the previous one proposed

by C. Lee et al. (2006) in the sense that the number of tagging queries to forge a

valid (message, tag) pair can be reduced by increasing the number of message blocks

for each query. Further, we show that the value of L can be recovered by invoking a

few more tagging queries. Finally, in Section 7.3.3, we describe how knowledge of L

enables us to launch a more powerful almost universal forgery attack against PMAC1.

Such techniques can similarly be applied to the existing attack given by C. Lee et al.

(2006).

7.3.1 Constructing Forgeries based on the Structure of the Gray Code

In this section, we seek to demonstrate that the result on the structure of the

gray code given in Theorem 7.1 implies that we can construct two distinct messages

such that the probability that they share the same tag is higher than 2−n. Our idea is

to force the ∑ (refer to Figure 7.1) of two distinct messages to the same value. This

is similar to the attacks of Gauravaram and Kelsey (2008) on hash functions that use

linear checksums where they force the checksum in the attacks to a specific value and

then solve the system of linear equations to find the correct blocks for the attacks to

be valid. Gauravaram, Kelsey, Knudsen, and Thomsen (2010) then improved their

attacks on linear as well as more complicated hash checksums. To this end, we first

observe that according to the design specifications of PMAC, the tag generation of a

one-block message involves only one encryption since the last message block (which is
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the message block itself for a one-block message) is not encrypted. In particular, using

the notations in the specification, X [1] = pad(M[1])+0 ·L in the case where |M[1]|< n.

This enables us to obtain the encryption of any n-bit message M0 6∈ {0n,10n−1} as

follows:

• Fix an M0 6∈ {0n,10n−1}.

• Let M′0 be such that pad(M′0) = M0. Clearly, M′0 exists since M0 6= 0n or 10n−1.

For example, if M0 = ak−1ak−2 . . .a0100 . . .0, let M′0 = ak−1ak−2 . . .a0 for a pos-

itive integer k.

• Request the tag for M′0, TM′0
.

• We have TM′0
= EK(pad(M′0)⊕0 ·L) = EK(M0).

The next lemma is a consequence of Theorem 7.1.

Lemma 7.1. Let k be a positive integer with k ≤ n−1. Fix an n-bit message M.

(i) Let a ∈ {c1, . . . ,c2k−1}. Consider two 2k-block messages X and Y defined as

follows:

X = M||M|| . . . ||M||EK(M),

Y = (M⊕a ·L)||(M⊕a ·L)|| . . . ||(M⊕a ·L)||EK(M⊕a ·L).

We have TX = TY , where TX and TY refer to the tags of the messages X and Y,

respectively.

(ii) Let a∈ {c2k , . . . ,c2k+1−1}. Suppose further that EK(M⊕ a ·L) 6∈ {0n,10n−1}. Let

M′ be the unique block with less than n bits such that pad(M′) = EK(M⊕a ·L).
Consider the following 2k+1-block message:

X ′ = (M⊕a ·L)|| . . . ||(M⊕a ·L)||M|| . . . ||M||M′,
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where the first 2k−1 blocks of X ′ are equal to M⊕a ·L, the next 2k blocks of X ′

are equal to M and the final block is M′. Then the tag of X ′ is TX ′ = L.

Proof. Define the sets Ck and C′k as in Theorem 7.1.

(i) We have:

TX = EK(EK(M⊕ c1 ·L)⊕ . . .⊕EK(M⊕ c2k−1 ·L)⊕EK(M)⊕ c′ ·L)

= EK(
⊕

b∈Ck

EK(M⊕b ·L)⊕ c′ ·L) (7.1)

On the other hand,

TY = EK(EK(M⊕a ·L⊕ c1 ·L)⊕ . . .⊕EK(M⊕a ·L · c2k−1 ·L)⊕

EK(M⊕a ·L)⊕ c′ ·L)

= EK(
⊕

b∈Ck

EK(M⊕ (a⊕b) ·L)⊕ c′ ·L)

= EK(
⊕

b∈Ck

EK(M⊕b ·L)⊕ c′ ·L) = TX

Here, the second last equality follows by (i) of Theorem 7.1 since a ∈Ck.

(ii) In this case, we have:

TX ′ = EK(EK(M⊕a ·L⊕ c1 ·L)⊕ . . .⊕EK(M⊕a ·L⊕ c2k−1 ·L)

⊕EK(M⊕ c2k ·L)⊕ . . .⊕EK(M⊕ c2k+1−1 ·L)⊕ pad(M′)⊕

0 ·L)

= EK(
⊕

b∈Ck

EK(M⊕ (a⊕b) ·L)⊕
⊕

b′∈C′k

EK(M⊕b′ ·L))

= EK(
⊕

b∈C′k

EK(M⊕b ·L)⊕
⊕

b′∈C′k

EK(M⊕b′ ·L))

= EK(0) = L

Here,
⊕

b∈Ck
EK(M⊕ (a+ b) ·L) =⊕

b∈C′k
EK(M⊕ b ·L) follows from (ii) of

Theorem 7.1.
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In view of Lemma 7.1, for a positive integer k ≤ n− 1 and an n-bit message

block M,M 6∈ {0n,10n−1}, denote by AD(M;2k) the message with 2k blocks of the

form M||M|| . . . ||M||EK(M), i.e., AD(M;2k) is a 2k-block message where the first 2k−
1 blocks are equal to M and the final block is the encrypted message EK(M). Since

M 6∈ {0n,10n−1},EK(M) can be obtained through one tagging query and AD(M;2k)

can be constructed. Further, let T (M;2k) denotes the tag of AD(M;2k). The next

theorem is the main result of this section.

Theorem 7.2. Fix M to be an n-bit one-block message with M 6∈ {0n,10n−1}. Let M′

be a random n-bit one-block message with M′ 6∈ {M,0n,10n−1}. Then for any positive

integer k≤ n−1, the probability that both T (M;2k) and T (M′;2k) are equal is at least
2k−3

2n .

Proof. Let Z = M⊕M′. By (i) of Lemma 7.1, if Z = a · L for a ∈ {c1, . . . ,c2k−1},
then T (M;2k) = T (M′;2k). Since Z 6∈ {0n,M,M⊕ 10n−1}, the probability that a ∈
{c1, . . . ,c2k−1} is at least 2k−3

2n . Consequently, the probability that T (M;2k)=T (M′;2k)

is at least 2k−3
2n .

When k > 2, 2k−3
2n ≥ 5

2n > 1/2n. Thus, Theorem 7.2 shows that there exist dis-

tinct messages for which the probability of the messages sharing the same tag is greater

than 2−n, contradicting the claim made by Black and Rogaway (2002, Proof of Lemma

2, Case(D3,D5)) which essentially asserts that tags of any two random messages col-

lide with a probability of 1/2n. In Theorem 7.2, we have shown that this probability

can be influenced by the number of message blocks involved.

Recall that Black and Rogaway (2002, Lemma 2) seeks to determine the prob-

ability when a certain game involving two distinct messages succeeds. Roughly speak-

ing, it is the sum of probabilities that either the internal blocks of the two messages

collide or the final tags collide. Black and Rogaway (2002) termed this probability

the MM-collision bound. Suppose that AD(M;2k) and AD(M′;2k) are the inputs to

the MM-collision game. In this case, since all the internal blocks between the two
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messages are distinct, the game will succeed with a probability of 2k−3

2n , which is less

than the MM-collision bound of 22k

2n proven by the authors. As such, we believe that

the proof of the MM-collision bound (and thus, the security bound) remains valid even

though the claims made in cases D3 and D5 are ambiguous. Nonetheless, we show that

this higher tag collision probability can be exploited in various ways as we illustrate in

the following section.

7.3.2 A General Birthday Attack on PMAC1

We begin this section by briefly reviewing the birthday attack proposed by

C. Lee et al. (2006). We describe only a simplified version of the attack by selecting

one-block messages and considering the tag length, τ, to be n, where n denotes the

block size. Note that this attack applies to both PMAC1 and PMAC2. Thus, we refer

to the notations used in Section 7.2.

Let A be a set of around 2n/2 one-block messages such that each message has

less than n bits. Let B be a set of around 2n/2 one-block messages where each message

has exactly n bits. According to the birthday paradox arguments, there exist messages

X ∈ A and Y ∈ B such that TX = TY . Hence, EK(pad(X)⊕c ·L) = EK(pad(Y )⊕c′ ·L).
Notice that pad(Y ) = Y . By the bijectivity of EK, it follows that pad(X)⊕ c · L =

Y ⊕ c′ ·L, and L can be found by L = (pad(X)⊕Y )/(c⊕ c′). With the value of L, for

any one-block message M with less than n bits, let M′ =pad(X)⊕ (c+c′) ·L. Then, M

and M′ will have the same tag and (M′,TM) will be a valid (message,tag) pair.

Observe that O(2n/2) tagging queries are required to carry out the above birth-

day attack. On the other hand, the observation presented in Theorem 7.2 can be ex-

ploited to launch a more general birthday attack on PMAC1 that invokes fewer tagging

queries at the expense of an increase in the number of message blocks in each query.

This is especially effective for the scenario where fewer (message, tag) pairs can be

obtained by the attacker. The attack, which is an existential forgery attack, can be

described as follows (refer to Figure 7.2):
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M1||M1|| · · · ||EK(M1)

M2||M2|| · · · ||EK(M2)•••
Ms||Ms|| · · · ||EK(Ms)

TagK(·)
T (M1; 2

k)

T (M2; 2
k)

•••
T (Ms; 2

k)

T (M1; 2
k)

T (M2; 2
k)

•••
T (Ms; 2

k)

Compare
Tag

T (Mi; 2
k)

T (Mj; 2
k)

= Z = Mi ⊕Mj

TagK(·)Mr||Mr|| · · · ||EK(Mr) T (Mr; 2
k)

X = Mr ⊕ Z||Mr ⊕ Z|| · · · ||EK(Mr ⊕ Z)

T (Mr; 2
k)

Forgery

Figure 7.2: Diagram of the General Birthday Attack on PMAC1

1. Fix a positive integer k so that it is feasible to obtain the tag for a message with

2k blocks.

2. For s = O(2(n−k)/2), do:

• Randomly pick s distinct n-bit one-block messages Mi 6∈ {0n,10n−1}, i =

1, . . . ,s.

• Obtain the encryption EK(Mi) via a tagging query.

• Construct the messages AD(Mi;2k).

• Query the tagging oracle for the tag of AD(Mi;2k) to obtain T (Mi;2k).

3. Find i and j,1≤ i < j ≤ s such that T (Mi;2k) = T (M j;2k).

4. Let Z = Mi⊕M j.

5. Pick an r,1≤ r ≤ s,r 6∈ {i, j} such that (Mr⊕Z) 6∈ {0n,10n−1,M1,M2, . . . ,Ms}.

6. Obtain the encryption EK(Mr⊕Z) via the tagging query.

7. Construct the message X = AD(Mr⊕Z,2k).
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8. Output the tag T (Mr;2k) as the tag of X .

We now explain why our attack works. First, it follows from Lemma 7.1 (i) that

there are O(2k) different messages of the form AD(M;2k) such that their tags T (M;2k)

are identical. As such, all such messages AD(M;2k) for different n-bit messages M

will have O(2n−k) different tags. By the birthday paradox arguments, any set with

s = O(2(n−k)/2) messages will likely contain two messages (Mi and M j) producing the

same tag, i.e., T (Mi;2k) = T (M j;2k). Given that the block cipher is a pseudorandom

permutation, we conclude that if T (Mi;2k) = T (M j;2k), then it is most likely that Z =

Mi⊕M j = a ·L for some a ∈ {c1, . . . ,c2k−1}. Consequently, according to Lemma 7.1

(i), the messages AD(Mr;2k) and AD(Mr⊕Z;2k) will have the same tags. Moreover,

from the way we constructed the message Mr, it is clear that X = AD(Mr⊕Z;2k) had

not been queried before. In other words, (X ,T (Mr;2k)) is a valid (message, tag) pair.

So far, we have obtained Z = a · L for a ∈ {c1, . . . ,c2k−1}. If a ∈ C′k−1 =

{c2k−1, . . . ,c2k−1}, then Lemma 7.1 (ii) shows that the value of L can be found through

the tag of a certain message. Moreover, it follows from the lemma that a ∈ Ck−1

(or equivalently, a 6∈ C′k−1) if and only if T (M;2k−1) = T (M⊕ Z;2k−1) for any n-

bit message M 6∈ {0n,10n−1}. More generally, as long as a ∈ C′j for some j ≤ k− 1,

the value of L can be determined and we can check whether a ∈ C j by checking if

T (M;2 j) = T (M⊕Z;2 j). From these observations, we can extend the preceding at-

tack to determine the value of L as follows:

• Pick an n-bit message M so that M,M⊕ Z and EK(M⊕ Z) are not in the set

{0n,10n−1}.

• Set j = k−1.

• While T (M;2 j) = T (M⊕Z;2 j) do: j := j−1;

• Let M′ be such that pad(M′) = EK(M⊕Z).
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• Construct a message X ′ with 2 j+1 blocks of the form

X ′ = (M⊕Z)|| . . . ||(M⊕Z)||M|| . . . ||M||M′,

i.e., the first 2 j−1 blocks of X ′ are equal to M⊕Z, the next 2 j blocks of X ′ are

equal to M and the final block of X ′ is M′.

• Obtain the tag of X ′ through a tagging query and denote it by TX ′.

• Set L = TX ′.

Our attack requires O(2(n−k)/2) tagging queries to both forge the tag for a new

message or to find L. Thus, this attack requires fewer tagging queries than the birth-

day attacks (C. Lee et al., 2006) which require O(2n/2) queries. Consequently, our

attack is still effective even if the users can obtain fewer (message,tag) pairs. Never-

theless, if k≤ n/2, the total number of blocks (and hence, block cipher calls) is around

O(2(n+k)/2)+O(2k) = O(2(n+k)/2).

In order to illustrate the complexity of our attack, we consider a PMAC1

scheme with a 64-bit and 128-bit block cipher. The Table 7.1 gives the complexities

of our attack for different values of k.

Table 7.1: Number of Tagging Queries for Different n-Bit Block Sizes and Mes-
sage Blocks in Each Query

n log2 message blocks # tagging queries
64 16 O(224)
64 24 O(220)
64 32 O(216)

128 32 O(248)
128 48 O(240)
128 64 O(232)
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Finally, we remark that all the attacks in this section are general in the sense

that they can be applied to messages with varying number of message blocks, namely

2k blocks, for any positive integer k. More precisely, observe that the birthday attacks

(C. Lee et al., 2006) require q = O(2n/2) queries in which the maximum number of

message blocks of each query is l = O(1). On the other hand, in the worst-case sce-

nario when a “bad irreducible polynomial” is used in the construction of the finite field

GF(2n), our analysis in the next section shows that PMAC2 tags can be forged using

q = O(1) queries and l = O(2n/2). As such, our attacks on PMAC1 can be viewed as

a bridge between these two extremes, since they enable us to forge PMAC1 tags with

l = O(2k) and q = O(2(n−k)/2)) for any integer k between 1 and n/2.

7.3.3 Almost Universal Forgery Attack on PMAC1

In this section, we discuss how knowledge of L leads to an almost universal

forgery attack, namely, apart from a few exceptions, we wish to find the tag of any

message M without passing M through the tagging oracle. Here, we describe one such

procedure. Let M denote a given message. Decompose M into M = M[1]|| . . . ||M[m].

Suppose that M[m] 6= x−1 ·L or 10n−1⊕ x−1 ·L. We consider two cases.

• Case 1: |M[m]|< n

1. Determine M[m]′ =pad(M[m])⊕ x−1 ·L.

2. Request the tag of M′ = M[1]||M[2]|| . . . ||M[m− 1]||M[m]′. Notice that

M′ 6= M.

3. Output TM′ as the tag of M.

We see that this attack works since TM′ =EK(
⊕m−1

i=1 EK(M[i]⊕ci ·L)⊕M[m]′)=

EK(
⊕m−1

i=1 EK(M[i]⊕ ci ·L)⊕pad(M[m])⊕ x−1 ·L) = TM.

• Case 2: |M[m]|= n

1. Determine M[m]′ = M[m]⊕ x−1 ·L.

2. Find M[m]′′ where pad(M[m]′′) = M[m]′. Notice that |M[m]′′| < n and

M[m]′′ exists because M[m]′ 6= 0n,10n−1.

164



www.manaraa.com

S
iti H

asm
ah D

igital Library
3. Request the tag of M′ = M[1]||M[2]|| . . . ||M[m− 1]||M[m]′′. Observe that

M′ 6= M.

4. Output TM′ as the tag of M.

Similar to case 1, this attack works since TM′ = TM.

We may use more queries to forge the tag of our exceptional cases but we leave

interested readers to work out the details. Notice that this procedure can be applied to

the birthday attack proposed by C. Lee et al. (2006) as well since the value of L can be

explicitly obtained.

7.4 On the Security of PMAC2

We now turn our attention to the security of PMAC2 against existential forgery

attacks. By considering the tag generation algorithm for PMAC, it is apparent that

the security of such construction greatly depends on the masks ci ·L used to mask the

individual blocks. For instance, if there exist two identical masks for two different

blocks of message, an attacker may exploit such a scenario to construct a forgery by

swapping the messages in these two different blocks as both messages will generate

a same tag (resulting in a collision). This holds true since the addition operation in

GF(2n) (or equivalently, the exclusive-or operation) is commutative.

However, the constants ci = xi,1≤ i≤m−1 will all be distinct for PMAC2 as

long as m ≤ 2n− 1. Nonetheless, as the constants used in different messages are the

same, we now show how a one-block message can be exploited to construct collisions

of messages.

Recall that for PMAC2, the last constants ( i.e., c or c′) are dependent on the

number of message blocks involved. Let M1 be any one-block message so that m = 1.

By our construction, the tag for M1 is TM1 = EK(pad(M1)⊕ d ·L), where d = x3 + x

or x2 + x. Now, suppose that there exists some k,k ≥ 1 for which ck = d. Define a

message M = M[1]||M[2]|| . . . ||M[k]||M[k+1], where M[1], . . . ,M[k−1] are arbitrary,
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M[k] = pad(M1),M[k+1] = TM1⊕R, for some arbitrary n-bit R. Hence,

TM = EK(
k⊕

i=1

EK(M[i]⊕ ci ·L)⊕TM1⊕R⊕ ck+1 ·L)

= EK(
k−1⊕

i=1

EK(M[i]⊕ ci ·L)⊕EK(M[k]⊕ ck ·L)⊕TM1⊕R

⊕ck+1 ·L)

= EK(
k−1⊕

i=1

EK(M[i]⊕ ci ·L)⊕R⊕ ck+1 ·L) (7.2)

Since the constants c1, . . . ,c2n−1 are all distinct, there must certainly exist some

k,1 ≤ k ≤ 2n− 1 for which ck = d. Since M1 is arbitrary in the derivation of TM in

Equation 7.2, we now show that three queries are sufficient to launch a forgery attack

on PMAC2.

For PMAC2, d = x2 + x or x3 + x, depending on the length of the block M1.

Denote by a and b the integers for which xa = x2 + x and xb = x3 + x, respectively.

(More details on a and b will be given in the next section.)

• Let M1 and M′1 be two i-bit messages, where i = n if a < b and i < n if a > b.

Let k = min(a,b).

• Query the tagging orcle to obtain the tags TM1 and TM′1
for the messages M1 and

M′1, respectively.

• Fix R to be an n-bit string. Then, construct a message M = M[1]|| . . . ||M[k−
1]||pad(M1)||M2, where M2 = TM1⊕R and M[1], . . . ,M[k−1] are arbitrary.

• Query the tagging oracle to obtain TM, the tag for M.

• Construct another message M′=M[1]|| . . . ||M[k−1]||pad(M′1)||M′2, where M′2 =

TM′1
⊕R.

• Output TM as the tag for M′.
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It is clear that both TM and TM′ are identical since M1 and M′1 are not involved

in the expression for TM (and thus TM′) in Equation 7.2. Here, 3 queries are required

and the total number of message blocks of our queries is min(a,b)+ 3. Further, we

remark that i≥ 1 forgeries can be constructed using the above attack with total queries,

q = i+2 and total number of blocks, σ = i× min(a,b)+3.

7.4.1 Determining the Size of a and b

Evidently, the feasibility of our preceding attack is greatly influenced by the

size of a or b. A fixed primitive irreducible polynomial was suggested by Rogaway

(2004) for n = 128 and the values of a and b were shown to be extremely large for the

specified polynomial. Hence, the authors have proposed parameters to guard against

our attack.

In this section, we attempt to determine a and b under different irreducible

polynomials in order to investigate how large or small they may be. Our analysis

shows that the choice of the underlying irreducible polynomial greatly influences the

range of these values. As such, care must be taken to check for the values of a and b

when new parameters are set for the scheme.

According to our attack on PMAC2, we need the values of a and b for which

xa = x2+x and xb = x3+x. Now, let u be such that xu = x+1. Since xu+1 = x2+x and

x2u+1 = x(x+1)2 = x3+x, we have a = u+1 mod 2n−1 and b= 2u+1 mod 2n−1.

As such, we concentrate on finding u satisfying xu = x+1.

In fact, this is the well-known discrete logarithm problem in the field GF(2n)

which can be solved using the index-calculus method with a worst-case sub-exponential

running time. For n≤ 256, these computations can be carried out within hours.

Recall that a primitive irreducible polynomial needs to be specified in con-

structing the field GF(2n). Although different polynomials give rise to isomorphic

finite fields GF(2n), the corresponding value of u (satisfying xu = x+ 1) may vary
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over all the primitive irreducible polynomials of degree n with binary coefficients. To

illustrate, we list down the values of u for the various primitive irreducible polynomials

of degree 8 in Table 7.2.

Table 7.2: The Values of u for the Various Primitive Irreducible Polynomials of
Degree 8

Primitive Irreducible Polynomial u
x8 + x6 + x5 + x2 +1 233
x8 + x7 + x2 + x+1 99

x8 + x6 + x4 + x3 + x2 + x+1 122
x8 + x6 + x5 + x+1 197

x8 + x7 + x6 + x3 + x2 + x+1 141
x8 + x6 + x3 + x2 +1 23
x8 + x4 + x3 + x2 +1 25
x8 + x7 + x3 + x2 +1 59
x8 + x6 + x5 + x3 +1 16

x8 + x7 + x6 + x5 + x4 + x2 +1 134
x8 + x7 + x5 + x3 +1 13
x8 + x5 + x3 + x2 +1 240
x8 + x7 + x6 + x+1 157
x8 + x6 + x5 + x4 +1 231

x8 + x7 + x6 + x5 + x2 + x+1 115
x8 + x5 + x3 + x+1 243

Observe that the value of u ranges from 13 to 243. For u = 13,a = 14 and

b = 27 which implies that a < 2n/2 = 16. Our next result shows that for any even

n, there exists an irreducible polynomial of degree n such that u = 2n/2. For more

properties on finite fields which are required for the proof, we refer the reader to Lidl

and Niederreiter (1984).

Theorem 7.3. Let n be even and write n = 2n0. There exists a monic irreducible

polynomial of degree n, denoted by p(x), such that x2n0 = x+1.

Proof. Let f (x) = x2n0 + x+ 1. We first show that f (x)|(x2n
+ x). Since x2n0 = x+ 1,

2n0 repeated squarings then yield x2n
= x2n0 +1 = x+1+1 = x. Hence, it follows that

f (x)|(x2n
+ x). This means that every root of f (x) is an element in the field GF(2n).
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These roots are not elements of GF(2n0) since gcd( f (x),x2n0 + x) = 1. Moreover,

as the derivative of f (x) is 1, f (x) has no repeated roots, that is, it has 2n0 distinct

roots which lie in GF(2n)\GF(2n0). Now, all subfields of GF(2n) are of the form

GF(2d),d|n. Therefore, |⋃d|n,d 6=n/2,n GF(2d)| ≤ ∑d|n,d 6=n/2,n |2d < 2n/2. Hence, there

must exist some root β of f (x) which does not lie in any subfield of GF(2n). Let

p(x) be the minimal polynomial of β over GF(2). Then, p(x)| f (x) is an irreducible

polynomial of degree n and β 2n0 = β +1. Our result now follows.

We verify our results using the Magma Algebra Computational System for

n ≤ 40 and find that in fact, there exists a primitive irreducible polynomial such that

Theorem 7.3 holds for all these values of n.

Before we conclude this section, we list down the discrete logarithm values

of a and b for n = 64,96,128,160 and their respective polynomials suggested by the

authors in Table 7.3. Once again, our results are obtained within minutes with the aid

of the Magma Algebra Computational System.

Table 7.3: Discrete Log Values for Different Irreducible Polynomials

n pn(x) log2 a log2 b
64 p64(x) = x64 + x4 + x3 + x+1 63.071 59.683
96 p96(x) = x96 + x10 + x9 + x6 +1 95.674 95.253
128 p128(x) = x128 + x7 + x2 + x+1 127.994 127.987
160 p160(x) = x160 + x5 + x3 + x2 +1 159.670 159.241

7.5 Discussion

So far, we have presented some possible forgery attacks on both PMAC schemes.

Essentially, our attacks hinge on the following characteristics of the sequence of con-

stants c1, . . . ,c2n−1,c,c′:
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• For some m, the constants c1, . . . , . . . ,cm−1,c,c′ contain a large subset A sat-

isfying the following property: There exist nonzero n-bit strings y such that

A⊕ y = {z⊕ y : z ∈ A}= A.

• There exists some i,1≤ i≤ m−1 such that ci = c or ci = c′.

We have seen that the gray code satisfies the first property with A = {c0,c1, . . . ,

c2k−1} for any positive integer k and any y ∈ A. As a result, the probability of a

successful forgery will increase proportionately with the number of message blocks

m. On the other hand, PMAC2 is not as vulnerable to this attack since it is not so

straightforward to construct a set A and many strings y satisfying the given property

for a given m.

It can be noted that both sets of constants satisfy the second property. However,

as pointed out by Black and Rogaway (2002), the value of i for which ci = x−1 will

be huge (bigger than 2n−1) irrespective of the irreducible polynomial being used. In

view of this, we focus our attention on PMAC2 and we showed that a “bad” choice

of primitive irreducible polynomial will lead to a forgery attack with the total number

of blocks σ = O(2n/2). We even gave some counter examples for GF(28) in Table 1

to show that there exists some primitive irreducible polynomials of degree 8 that will

lead to a forgery attack with total number of blocks fewer than 24, hence breaking the

security bound of PMAC2.

Apart from selecting a good primitive irreducible polynomial for which the

value of i is exhorbitantly large, it may be useful to restrict the number of blocks in the

messages that can be authenticated as well. Alternatively, the tagging of a one-block

message can be separately treated so as to prevent the possibility of inserting the tag

into a long message to cancel out an intermediate block.

Finally, we briefly discuss the case when truncation of the tags is performed

(i.e., τ < n) on PMAC2. Following the same attack procedure, we can then construct
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a set of 2n−τ messages that contains a message having the same tag as one of our

queries. This gives us a probability of 1/2n−τ of forging a valid tag with three queries

for PMAC2. If messages in this set can be queried, then the last n− τ bits of the

encrypted output corresponding to our one-block message can be determined, and thus,

additional forgeries can be easily constructed.

7.6 Summary

In this chapter, we presented weaknesses of the PMAC schemes arising from

two main characteristics of the constants in the construction. These weaknesses allow

us to launch forgery attacks on PMAC1 as well as PMAC2. We proposed a general

birthday attack on PMAC1 that requires fewer than O(2n/2) tagging queries when more

message blocks are used for each message query. Similar to the original birthday at-

tack, we can both create forgeries of new messages (existential forgery attack) as well

as recover the value of L explicitly. Once L is recovered, we used L to construct an

almost universal forgery attack on PMAC1 where we can forge the tags for most of

the messages. The attacks we present in this chapter exploit the structural properties

of PMAC. Further, our attack on PMAC2 is explicit and independent of the birthday

paradox. Even though the number of queries may be surprisingly small (especially in

the case of PMAC2), the total number of message blocks is often too large to pose any

direct danger to the schemes. Nonetheless, we pointed out that the attacks remain valid

according to the specifications given by the authors of the schemes. More importantly,

we showed that the total number of blocks of the queries may vary significantly for

PMAC2 (which may be as low as 2n/2), depending on the choice of the irreducible

polynomial used in the construction of the underlying finite field. This indicates the

danger of fixing an irreducible polynomial randomly or arbitrarily. However, we em-

phasised that our attacks did not break the security bound of PMACs. Rather, we

provided explicit attacks which achieve these bounds in some instances.
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CHAPTER 8

WEAKNESSES IN THE KEY SCHEDULE ALGORITHM OF RECENT

IMAGE ENCRYPTION SCHEMES USING EXTERNAL KEY

A compulsory condition for the security of an image encryption scheme is that

the length of the external secret key should be sufficiently long in terms of bit length.

However, the sufficiently long secret key is not a guarantee that the scheme is se-

cure. We emphasise the importance of designing a secure Key Schedule algorithm by

showing the weakness of the Key Schedule algorithms proposed in two recent image

encryption schemes, i.e., the X. Wang and Wang scheme and the Norouzi and Mirza-

kuchaki scheme. Both schemes share a common weakness where the effective space

spanned by the subkeys is smaller than the external secret key space. Such smaller sub-

key space leads to a practical meet-in-the-middle attack against the X. Wang and Wang

scheme with the time complexity of 226.322 encryptions and a brute-force attack against

the Norouzi and Mirzakuchaki scheme with the time complexity of 2192 encryptions

even though the designers claimed that brute-force attack is applicable against their

schemes with the time complexity of 2256 encryptions due to a 256-bit external key

being used. This chapter serves an important remark to show the relationship between

a secure key schedule algorithm with a secure image encryption algorithm.

8.1 Introduction

Even though most of the image encryption schemes do not specifically describe

their Key Schedule algorithms explicitly as compared to block ciphers, yet an image

encryption algorithm can actually also be seen to comprise of three different algo-

rithms, i.e., Key Schedule , E and D . Different with block ciphers, image encryption

algorithms (Pareek, Patidar, & Sud, 2003, 2005, 2006; X. Wang & Guo, 2014; Wei,

Liao, wo Wong, & Zhou, 2007) are generally constructed based on chaotic maps or

chaotic systems. Designers may either treat the initial conditions and/or the control
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parameters of chaotic maps or chaotic systems (Gao, Gu, & Chen, 2009; Qi, Chen,

Du, Chen, & Yuan, 2005; Yujun, Xingyuan, Mingjun, & Huaguang, 2010) as the se-

cret key directly or use an external secret key to derive the subkeys (e.g., the number of

rounds, the initial conditions and/or the control parameters of chaotic maps or chaotic

systems) using the Key Schedule algorithm. Besides, the Key Schedule algorithm

of an image encryption algorithm may also treat plain image related information (e.g.,

the number of pixels in an image or the last pixel value of an image) as part of the

input along with the external secret key.

However, many designers of image encryption schemes claim the security of

their schemes based on the length of the external secret key. In this chapter, we empha-

sise the importance in designing a secure Key Schedule algorithm as the sufficiently

long secret key is not a guarantee that the proposed image encryption scheme is se-

cure. Throughout this thesis, we term the total number of possible subkeys derived

from the Key Schedule algorithm under the control of an external secret key as the

subkey space and the total number of possible external secret keys as the key space.

To highlight the effect of an insecure Key Schedule algorithm on the security

of the image encryption scheme, we give two concrete examples by showing the weak-

ness of the Key Schedule algorithm proposed in two different schemes by X. Wang

and Wang (2014) and by Norouzi and Mirzakuchaki (2014). We find out that the ef-

fective subkey space of these two schemes is smaller than the key space. The smaller

effective space leads to a number of attacks against the aforementioned schemes.

X. Wang and Wang (2014) proposed a novel image encryption algorithm based

on dynamic S-boxes constructed by chaotic maps. A 256-bit external secret key is used

to derive the initial conditions of two chaotic maps (i.e., the logistic map and the Kent

map) with the additional last pixel of a plain image P. Then, the sequence generated by

the chaotic maps are used to construct the initial dynamic S-box. During the encryp-

tion process, the construction of S-box will change according to the encrypted pixels.

Meanwhile, Norouzi and Mirzakuchaki (2014) proposed a fast color image encryption
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algorithm based on two hyper-chaotic systems. A 256-bit external secret key is used

to generate the initial conditions for these two chaotic systems. The sequences gener-

ated by these chaotic systems will then be used for image encryption. Both schemes

share some similarities: 1) A 256-bit external secret key is used to derive the subkeys

required to encrypt a plain image and 2) Both designers claimed that their schemes are

secure against brute-force attack as 256-bit secret key is used.

Even though a 256-bit long secret key K is used in X. Wang and Wang proposed

scheme, the effective subkey space is as small as 244.644 and this gives rise to a brute-

force attack with a practical time complexity of 244.644 encryptions only. Furthermore,

by using the meet-in-the-middle technique (Diffie & Hellman, 1977), the attacker can

even recover the subkeys with the time complexity of 226.322 encryptions. On the other

hand, the effective key space of the Norouzi and Mirzakuchaki proposed scheme is

264 smaller than the claim made by the designers. Our results show that the designers

should pay attention to ensure that their proposed Key Schedule algorithm should

not produce a smaller effective subkey space as compared to the length of the used

external secret key. This is because the recovery of the subkey will enable the attacker

to freely decrypt any encrypted image, which leads to the same impact as recovering

the external secret key. Table 8.1 summarises the effective key space of the X. Wang

and Wang scheme and the Norouzi and Mirzakuchaki scheme.

Table 8.1: The Effective Key Space of Two Image Encryption Schemes

Scheme Effective Key Space Source

(X. Wang & Wang, 2014) 244.644 Section 8.3.1
(Norouzi & Mirzakuchaki, 2014) 2192 Section 8.3.2

Organisation. The remainder of this chapter is organised as follows. In the next

section, we describe the specification of the Key Schedule algorithm proposed by

X. Wang and Wang (2014) and by Norouzi and Mirzakuchaki (2014). In Section 8.3,
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the security of the proposed Key Schedule algorithms is thoroughly analysed by find-

ing out the effective key space. Section 8.4 concludes the chapter.

8.2 The Key Schedule Algorithm for Different Image Encryption Schemes

Since we only study the security of the image encryption schemes by exploit-

ing weaknesses in their Key Schedule algorithm, we ignore the description of en-

cryption and decryption algorithms. An m× n image P is denoted as P(i, j), for

i = 1,2, . . . ,m, j = 1,2, . . . ,n and P(i, j) is an 8-bit element, representing an image

pixel. For ease of understanding, we adopt a consistent style and notation in describing

the Key Schedule algorithm for different proposed image encryption schemes, i.e.,

X. Wang and Wang (2014) proposed scheme and Norouzi and Mirzakuchaki (2014)

proposed scheme. Thus, we let m = n = 256. Besides, a 256-bit external secret key K

is divided into 32 8-bit subkeys, i.e., K = (K1,K2, . . . ,K32).

8.2.1 The Key Schedule Algorithm Proposed by X. Wang and Wang

Let {i} denotes the decimal part of i (e.g., {5.55}= 0.55). Given an image P,

the last pixel of P is denoted as pk = P(256,256). The Key Schedule algorithm takes

an external secret key K and an image P and performs as follows:

1. Compute sum = pk⊕K1⊕K2⊕ . . .⊕K32.

2. Let µ = 4 and compute b = {(K32 +K1 + sum)/28 +0.01}.

3. Compute d1 = (K26 +K7 + sum) mod 5+5.

4. Compute d2 = (K27 +K6 + sum) mod 5+5.

5. Compute x1,1 = {(K23 +K10 + sum)/28 +0.01}.

6. Compute x2,1 = {(K22 +K11 + sum)/28 +0.01}.

7. Compute x1,2 = {(K21 +K12 + sum)/28 +0.01}.

8. Compute x2,2 = {(K20 +K13 + sum)/28 +0.01}.
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µ and b are the initial conditions of two chaotic maps, i.e., the logistic map and the

Kent map (X. Wang & Wang, 2014) respectively. Note that the subkeys for Round i of

the E algorithm are ski = (b,di,xi,1,xi,2) where i = 1,2.

8.2.2 The Key Schedule Algorithm Proposed by Norouzi and Mirzakuchaki

Let L = 256×256 = 65536. The Key Schedule algorithm takes an external

secret key K and L and performs as follows:

1. Compute K′ = (∑32
i=1 Ki) mod 256 where i mod j denotes modulo reduction of i

by the modulus j.

2. Compute Qi for i = 1 to 32 as shown in Table 8.2.

Table 8.2: Compute Q1 to Q32

Q1 = K1⊕K32⊕K′ Q17 = K17⊕K16⊕K′

Q2 = K2⊕K31⊕K′ Q18 = K18⊕K15⊕K′

Q3 = K14⊕K18⊕K′ Q19 = K13⊕K17⊕K′

Q4 = K16⊕K20⊕K′ Q20 = K15⊕K19⊕K′

Q5 = K5⊕K28⊕K′ Q21 = K21⊕K12⊕K′

Q6 = K6⊕K27⊕K′ Q22 = K22⊕K11⊕K′

Q7 = K10⊕K22⊕K′ Q23 = K9⊕K21⊕K′

Q8 = K12⊕K24⊕K′ Q24 = K11⊕K23⊕K′

Q9 = K9⊕K24⊕K′ Q25 = K25⊕K8⊕K′

Q10 = K10⊕K23⊕K′ Q26 = K26⊕K7⊕K′

Q11 = K6⊕K26⊕K′ Q27 = K5⊕K25⊕K′

Q12 = K8⊕K28⊕K′ Q28 = K7⊕K27⊕K′

Q13 = K13⊕K20⊕K′ Q29 = K29⊕K4⊕K′

Q14 = K14⊕K19⊕K′ Q30 = K30⊕K3⊕K′

Q15 = K2⊕K30⊕K′ Q31 = K1⊕K29⊕K′

Q16 = K4⊕K32⊕K′ Q32 = K3⊕K31⊕K′

3. For i = 1 to 8, perform as follows:

• Compute ti = 109×Q(i−1)4+1 +106×Q(i−1)4+2 +103×Q(i−1)4+3 +
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Q(i−1)4+4.

• Compute xi =
ti
L2 .

xi for i = 1 to 8 are treated as the initial conditions of hyper-chaotic systems (Norouzi

& Mirzakuchaki, 2014).

8.3 On the Effective Key Space of the Key Schedule Algorithm

8.3.1 The X. Wang and Wang Image Encryption Scheme

In this section, instead of recovering the 256-bit secret key K, we aim to recover

the subkeys (i.e., sk1 and sk2) as the attacker can encrypt and decrypt any image freely

with the possession of all the subkeys. From the specification of the Key Schedule

algorithm given in Section 8.2.1, to encrypt a plain image, the user needs only the

information of b,d1,d2,x1,1,x1,2,x2,1,x2,2 derived from the Key Schedule algorithm

under the control of a 256-bit secret key K.

Lemma 8.1. There exist 28 = 256 possible values of sum.

Proof. Given that sum = pk⊕K1⊕K2⊕ . . .⊕K32, K1, K2, . . . , K32 and pk are 8-bit

values. Thus, the exclusive-or of all parameters results in 8-bit values, i.e., 0 to 255.

Since there exist 2256 possible secret keys K = (K1,K2, . . . ,K32), thus there exist 2248

possible secret keys K that will derive the same value of sum for every possible known

value of pk.

Lemma 8.2. There exist 5 possible values of di where i = 1,2.

Proof. According to Lemma 1, there exist 256 possible values of sum. However,

(K26 + K7 + sum) mod 5 ∈ {0,1,2,3,4} and thus d1 = (K26 + K7 + sum) mod 5 +

5 ∈ {5,6,7,8,9}. It is clear that there exist 5 possible values of d1 only. We per-

formed the simulation in computing the value of d1 given all possible combinations of
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(K26,K7,sum), as shown in Table 8.3. Similar proof can be given for d2 = (K27+K6+

sum) mod 5+5.

Table 8.3: #(K26,K7,sum) that Results d1

d1 #(K26,K7,sum)
5 3355444
6 3355443
7 3355443
8 3355443
9 3355443

Lemma 8.3. There exist 28 = 256 possible values of b.

Proof. Given b = {(K32 +K1 + sum)/28 + 0.01}, there exist 766 possible values of

(K32 +K1 + sum) since (K32 +K1 + sum) ∈ {0,1,2, . . . ,3 ·255 = 765}. Hence, (K32 +

K1+sum)/28 ∈ [0,2.98828125] and (K32+K1+sum)/28+0.01∈ [0.01,2.99828125].

Finally, b = {(K32 +K1 + sum)/28 + 0.01} ∈ [0.01,0.99828125]. Even though there

exist 766 possible values of (K32 +K1 + sum), however after considering the division

and {·} operations, only 256 possible values of b remain and this is confirmed with the

simulation result shown in Table 8.4.

Lemma 8.4. There exist 28 = 256 possible values of x1,1, x1,2, x2,1 and x2,2 respec-

tively.

Proof. The proofs are similar as in Lemma 8.3.

Theorem 8.1. The effective key space of the Wang & Wang image encryption algorithm

is approximately 244.644.

Proof. According to Lemma 8.3 and Lemma 8.4, there exist 256 possible values of

sum, b, x1,1,x1,2,x2,1 and x2,2 respectively. Meanwhile according to Lemma 8.2, there

exist 5 possible value of d1 and d2 respectively. However, sum is not considered as

178



www.manaraa.com

S
iti H

asm
ah D

igital Library
Table 8.4: 256 Possible Values of b

0.00218750 0.00609375 0.01000000 0.01390625 0.01781250 0.02171875
0.02562500 0.02953125 0.03343750 0.03734375 0.04125000 0.04515625
0.04906250 0.05296875 0.05687500 0.06078125 0.06468750 0.06859375
0.07250000 0.07640625 0.08031250 0.08421875 0.08812500 0.09203125
0.09593750 0.09984375 0.10375000 0.10765625 0.11156250 0.11546875
0.11937500 0.12328125 0.12718750 0.13109375 0.13500000 0.13890625
0.14281250 0.14671875 0.15062500 0.15453125 0.15843750 0.16234375
0.16625000 0.17015625 0.17406250 0.17796875 0.18187500 0.18578125
0.18968750 0.19359375 0.19750000 0.20140625 0.20531250 0.20921875
0.21312500 0.21703125 0.22093750 0.22484375 0.22875000 0.23265625
0.23656250 0.24046875 0.24437500 0.24828125 0.25218750 0.25609375
0.26000000 0.26390625 0.26781250 0.27171875 0.27562500 0.27953125
0.28343750 0.28734375 0.29125000 0.29515625 0.29906250 0.30296875
0.30687500 0.31078125 0.31468750 0.31859375 0.32250000 0.32640625
0.33031250 0.33421875 0.33812500 0.34203125 0.34593750 0.34984375
0.35375000 0.35765625 0.36156250 0.36546875 0.36937500 0.37328125
0.37718750 0.38109375 0.38500000 0.38890625 0.39281250 0.39671875
0.40062500 0.40453125 0.40843750 0.41234375 0.41625000 0.42015625
0.42406250 0.42796875 0.43187500 0.43578125 0.43968750 0.44359375
0.44750000 0.45140625 0.45531250 0.45921875 0.46312500 0.46703125
0.47093750 0.47484375 0.47875000 0.48265625 0.48656250 0.49046875
0.49437500 0.49828125 0.50218750 0.50609375 0.51000000 0.51390625
0.51781250 0.52171875 0.52562500 0.52953125 0.53343750 0.53734375
0.54125000 0.54515625 0.54906250 0.55296875 0.55687500 0.56078125
0.56468750 0.56859375 0.57250000 0.57640625 0.58031250 0.58421875
0.58812500 0.59203125 0.59593750 0.59984375 0.60375000 0.60765625
0.61156250 0.61546875 0.61937500 0.62328125 0.62718750 0.63109375
0.63500000 0.63890625 0.64281250 0.64671875 0.65062500 0.65453125
0.65843750 0.66234375 0.66625000 0.67015625 0.67406250 0.67796875
0.68187500 0.68578125 0.68968750 0.69359375 0.69750000 0.70140625
0.70531250 0.70921875 0.71312500 0.71703125 0.72093750 0.72484375
0.72875000 0.73265625 0.73656250 0.74046875 0.74437500 0.74828125
0.75218750 0.75609375 0.76000000 0.76390625 0.76781250 0.77171875
0.77562500 0.77953125 0.78343750 0.78734375 0.79125000 0.79515625
0.79906250 0.80296875 0.80687500 0.81078125 0.81468750 0.81859375
0.82250000 0.82640625 0.83031250 0.83421875 0.83812500 0.84203125
0.84593750 0.84984375 0.85375000 0.85765625 0.86156250 0.86546875
0.86937500 0.87328125 0.87718750 0.88109375 0.88500000 0.88890625
0.89281250 0.89671875 0.90062500 0.90453125 0.90843750 0.91234375
0.91625000 0.92015625 0.92406250 0.92796875 0.93187500 0.93578125
0.93968750 0.94359375 0.94750000 0.95140625 0.95531250 0.95921875
0.96312500 0.96703125 0.97093750 0.97484375 0.97875000 0.98265625
0.98656250 0.99046875 0.99437500 0.99828125
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part of the subkeys that is needed to encrypt a plain image and the same value of b

is used in both Round 1 and Round 2. Thus, the number of all possible subkeys is

2565×52 = 27487790694400≈ 244.644.

A brute-force attack is applicable on the X. Wang and Wang scheme with the

time complexity of 244.644 encryptions. To further improve the time complexity of

the attack, the attacker can utilise the meet-in-the-middle attack technique (Diffie &

Hellman, 1977) (see Figure 8.1 for a graphical illustration) due to the small number of

rounds as follows.

sk1 sk2

P Cu

Backward DirectionForward Direction

?= vf f−1

Figure 8.1: The MITM Attack on X. Wang and Wang Image Encryption Scheme

1. Given a pair of plain image and encrypted image (P,C). C is generated by iterat-

ing P to a same round function f for two times under the control of subkeys sk1

and sk2, i.e., C = fsk2(fsk1(P)).

2. Guess 256 possible values of b, do:

a) Guess 5× 256× 256 = 218.322 possible values of (d1,x1,1,x1,2) and com-

pute u = fsk1(P) where f j(i) denotes the one round encryption of input i un-

der the control of a subkey j. Store the result u and the subkey in a memory

lookup hash table. Note that the memory complexity is O(218.322).

b) Guess 5× 256× 256 = 218.322 possible values of (d2,x2,1,x2,2) and com-

pute v = f−1
sk2(C) where f−1

j(i) denotes the one round decryption of input

i under the control of a subkey j. Check whether v matches any possible
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value of u using the stored memory lookup table. If v = u, then (sk1,sk2)

could be the right subkey since the probability of v = u under the control

of a wrong key is negligible.

After performing the above attack, the expected number of possible subkeys remaining

is less than 256, thus a brute-force attack can be carried out easily using one additional

pair of (P,C) to filter out all the remaining wrong subkeys excepts the right subkey. The

meet-in-the-middle attack has a time complexity of around 256×2×218.322 one round

encryptions ≈ 226.322 full encryptions assuming the memory write/access operations

are negligible.

Such a practical attack indicates that the X. Wang and Wang image encryption

scheme is not suitable for any security application.

8.3.2 The Norouzi and Mirzakuchaki Image Encryption Scheme

From the specification of Key Schedule algorithm given in Section 8.2.2, to

encrypt a plain image, the user needs only the information of Q1,Q2, . . . ,Q32 derived

from the Key Schedule algorithm under the control of a 256-bit external secret key K

to generate the initial conditions (i.e., xi for i= 1 to 8) of hyper-chaotic systems since L

is known. Since each Qi is of 8 bits, a naive brute-force attack has the time complexity

of 2256 encryptions, which is similar as the claim made by Norouzi and Mirzakuchaki.

We show that the effective key space of Qi for i = 1 to 32 is actually 264 times smaller.

Lemma 8.5. If Qi⊕Q j = Qk⊕Ql where i 6= j 6= k 6= l, there exists 224 candidates of

(Qi,Q j,Qk,Ql) that fulfill this equation.

Proof. There are total 232 candidates of (Qi,Q j,Qk,Ql) since each Q is of 8 bits. The

probability of (Qi,Q j,Qk,Ql) to fulfill the condition of Qi⊕Q j = Qk⊕Ql is 2−8 since

it is an 8-bit equation. Thus, 224 out of 232 candidates will remain. Lemma 8.5 is

verified through a computer simulation too.

181



www.manaraa.com

S
iti H

asm
ah D

igital Library
Theorem 8.2. The effective key space of the Norouzi & Mirzakuchaki image encryption

algorithm is 2192.

Proof. From Table 8.2, we know that

Q3⊕Q14 = Q18⊕Q20,

Q7⊕Q10 = Q22⊕Q24,

Q11⊕Q6 = Q26⊕Q28,

Q15⊕Q2 = Q30⊕Q32,

Q1⊕Q16 = Q29⊕Q31,

Q5⊕Q12 = Q25⊕Q27,

Q9⊕Q8 = Q21⊕Q23,

Q13⊕Q4 = Q17⊕Q19.

According to Lemma 8.5, thus there exist 224 candidates of (Q3,Q14,Q18,Q20), (Q7,

Q10,Q22,Q24), (Q11,Q6,Q26,Q28), (Q15,Q2,Q30,Q32), (Q1,Q16,Q29,Q31), (Q5,Q12,

Q25,Q27), (Q9,Q8,Q21,Q23) and (Q13,Q4,Q17,Q19) that fulfill the above equations.

By rearranging these candidates, we get the following list of candidates

(Q1,Q16,Q29,Q31),

(Q2,Q15,Q30,Q32),

(Q3,Q14,Q18,Q20),

(Q4,Q13,Q17,Q19),

(Q5,Q12,Q25,Q27),

(Q6,Q11,Q26,Q28),

(Q7,Q10,Q22,Q24),

(Q8,Q9,Q21,Q23).

Since each Qi for i = 1 to 32 appears once in the above list of candidates, thus the total

possible candidates of Qi for i = 1 to 32 is (224)8 = 2192. By knowing Qi for i = 1 to
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32, one can deduce t j and x j for j = 1 to 8 with the known value of L. With the values

of x j, one can encrypt any plain image and decrypt any encrypted image.

Finally, a brute-force attack can be launched against the Norouzi and Mirza-

kuchaki image encryption algorithm with the time complexity of 2192 encryption and

one pair of plain image and encrypted image. An attack with the time complexity

of less than 2256 also indicates that the underlying Key Schedule algorithm is not as

secure as designed.

8.4 Summary

Designers of image encryption algorithms should pay extra care in designing

the Key Schedule algorithm as it may affect the effective key space of their con-

structed image encryption algorithm. We have analysed the Key Schedule algorithm

proposed by X. Wang and Wang (2014) and by Norouzi and Mirzakuchaki (2014). The

effective key space of both schemes is far smaller than the designers’ claim. To make

it worse, the key space of the X. Wang and Wang scheme is around 244.644 (instead of

the claimed 2256) and such small key space gives rise to a practical meet-in-the-middle

attack with the time complexity of 226.322 encryptions. Even though the effective key

space of the Norouzi and Mirzakuchaki scheme is 2192 (instead of the claimed 2256)

which is still too large to make such brute-force attacks practical, the shrinking of the

key space after going through the Key Schedule algorithm indicates the weakness of

their proposed Key Schedule algorithm. One of the possible weaknesses learnt from

the above attacks is the smaller output domain of subkeys leads to a smaller entropy.

As a conclusion, designers should not judge the key space of their proposed image

encryption scheme based on the length of the external secret key solely.
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CHAPTER 9

CRYPTANALYSIS OF A NEW IMAGE ALTERNATE ENCRYPTION

ALGORITHM BASED ON CHAOTIC MAP

Typically, an image encryption scheme is said to have a good resistivity against

differential attack based on two quantitative measures, i.e., the number of pixel change

rate and the unified average changing intensity. However, these two quantitative mea-

sures are not a guarantee that the scheme is secure. In this chapter, we analyse the se-

curity of a new image alternate encryption scheme proposed by X. Wang and Guo, es-

pecially from cryptographic point of view, in line with the designers’ approach in their

security analyses. Negatively, even though that the experiment results showed that the

aforementioned quantitative measures are close to the ideal values, the image encryp-

tion scheme is still vulnerable to an impossible differential attack on 9-round X. Wang

and Guo scheme. This contradicts the designers’ claim that their proposed image en-

cryption scheme is secure against chosen plaintext attack even for r as small as 2.

Lastly, a simple divide-and-conquer attack can be applied to their proposed scheme by

obtaining the encrypted image of a large all black image.

9.1 Introduction

In 2003, Pareek, Patidar and Sud (2003) proposed a symmetric key block ci-

pher algorithm based on discrete chaos cryptography. Since then, a number of propos-

als had been presented to encrypt plain images using chaos cryptography, this includes

but is not limited to (Mirzaei, Yaghoobi, & Irani, 2012; Pareek et al., 2005, 2006; Pa-

reek, Patidar, & Sud, 2009, 2013; Patidar, Pareek, Purohit, & Sud, 2010; Tong, Wang,

Zhang, & Liu, 2013). However, many proposed image encryption schemes are not

well studied against cryptanalytic attacks and subsequently had been found insecure

against various attacks (Álvarez, Montoya, Romera, & Pastor, 2003; Li, Li, Álvarez,

Chen, & Lo, 2008; Li et al., 2009; Li, Liu, Xie, & Chen, 2013; Li, Zhang, Ou, Wong,
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& Shu, 2012; X. Wang & Liu, 2013; Zhang & Wang, 2014). Many proposals share

a similarity where the designers claimed that their schemes are secure against differ-

ential attack based on two quantitative measures, i.e., the number of pixel change rate

(NPCR) and the unified average changing intensity (UACI). If these two quantitative

measures (which measure the influence of a 1-pixel change in a plain image P on the

encrypted image C) are close to the ideal values, such scheme is said to have good

property in resisting differential attacks.

Very recently, X. Wang and Guo (2014) proposed a new image alternate en-

cryption scheme based on chaotic map. Technically, they proposed the use of key-

dependent chaotic sequence to provide confusion and diffusion that are needed to re-

sult in a secure block cipher. X. Wang and Guo’s proposed image encryption scheme

can be treated as a block cipher since same round function f is iterated for r times to

encrypt a plain image. X. Wang and Guo claimed that their proposed scheme is secure

against chosen plaintext/plain image attack and is sensitive to the changing of secret

key, even if the changes are very small. Besides, their experiment results showed that

the measured NPCR and UACI are close to the ideal values when r > 1 and thus they

claimed that their proposed scheme can resist plaintext and differential attack effec-

tively when r ≥ 2.

In this chapter, we revisit the security of X. Wang and Guo image encryption

scheme using some systematic cryptanalytic approaches. Our contributions are listed

as follows:

1. We study the key space of X. Wang and Guo image encryption scheme in detail.

2. We present a variant of differential attack, namely impossible differential attack,

on r-round X. Wang and Guo image encryption scheme where 2≤ r ≤ 9.

3. We present a divide-and-conquer attack on X. Wang and Guo image encryption

scheme by exploiting a large all black image (i.e., P(i) = 0 for i = 1,2, . . . ,m×
n).
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These results violate the claims stated by X. Wang and Guo (2014).

Organisation. The remainder of this chapter is organised as follows. In the next

section, we describes the specification of X. Wang and Guo image alternate encryption

algorithm from a cryptographic perspective.We first analyse the key space implied by

the chosen parameters in X. Wang and Guo image encryption scheme in Section 9.3.

In Section 9.4, we present an impossible differential attack on r-round X. Wang and

Guo image encryption algorithm based on miss-in-the-middle approach. Section 9.5

shows a divide-and-conquer attack on r-round X. Wang and Guo image encryption

scheme by exploiting a large all black image. Section 9.6 concludes the chapter.

9.2 The X. Wang and Guo Image Encryption Scheme

The image encryption algorithm proposed by X. Wang and Guo is interpreted

from a cryptographic perspective for ease of understanding. Given an m×n image P,

which in vectorised form is denoted as P(i), for i = 1,2, . . . ,m×n. P can be treated as

an image which contains i pixels. The image encryption scheme outputs an encrypted

image C on input an image P and a secret key K = (u,u′,y(0)) where y(0) ∈ (0,1) and

u,u′ ∈ [0,4]. The image encryption scheme can be divided into three main algorithms,

i.e., Key Schedule , E and D . We ignore the details of D algorithm as it is the inverse

of E algorithm.

9.2.1 The Key Schedule Algorithm

This algorithm on input part of a secret key (u′,y(0)) computes the chaotic

sequence y = {{y(i)}}m× n
2

i=1 using the following logistic map

y(i+1) = u′ · y(i) · (1− y(i)),y(i) ∈ (0,1),u′ ∈ [0,4] (9.1)

where i = 0,1,2, . . . ,(m× dn/2e)− 1. May (1974) proved that the logistic map is

chaotic for 3.5699456< u′≤ 4. Thus, throughout this chapter, we assume 3.5699456<

u′ ≤ 4 to result a chaotic map.
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9.2.2 The E Algorithm

1. Setup:

a) Compute the average avg =
sum(P)
m×n

where sum denotes the sum of all

pixel values P(i) in P; and obtain its decimal part avg1 = avg −bavgc.

b) Compute x(0) = avg2 =
bavg1×106c

106 .

c) Compute the sequence z= {z(i)}m× n
2

i=1 such that z(i)= b mod (y(i)×1010+

sum(P)× 103,256)c where i = 1,2, . . . ,m×dn/2e and mod (·,256) de-

notes modulo reduction by the modulus 256.

d) Compute rk = reshape(z,m,dn/2e) where reshape(·, i, j) denotes the re-

verse of vectorisation i.e., converting the vector back into matrix form of

dimension i× j.

2. Encrypt: Given an m×n plain image P, if n is an odd number, another known

column should be concatenated to P such that the column n becomes even. P

is then processed iteratively for r rounds (as shown in Figure 9.1), where each

round i performs the following:

a) P is column-wise divided into two equal-sized blocks, each of length dn/2e,
denoted respectively as left half block XLi and right half block XRi.

b) Compute XRi+1 as the XOR of XLi with rki, i.e. XRi+1 = XLi⊕ rki. Note

that rki = rk and rk is from Step 1(d).

c) Shuffle XRi+1 to obtain h as follows:

i. Generate the chaotic sequence x = {x(i)}m× n
2

i=1 using the following lo-

gistic map

x(i+1) = u · x(i) · (1− x(i)),x(i) ∈ (0,1),u ∈ [0,4] (9.2)

where i = 0,1,2, . . . ,(m×dn/2e)−1 and x(0) is from Step 1(b).
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Figure 9.1: Graphical Presentation of Encrypt with the Number of Rounds r

ii. Change the sequence x(i) into a {0,1} sequence by thresholding, i.e.,

x(i) = 1 if x(i) ≥ 0.5, and x(i) = 0 if x(i) < 0.5 for i = 1,2, . . . ,(m×
dn/2e).

iii. Initialise three arrays M,N,R. For i = 1,2, . . . , m×dn/2e, based on

the value of x(i), copy P(i) into M if x(i) = 1, else copy P(i) into N.

Concatenate M and N into R as follows. If the number of rounds r is

odd, then R = M||N, else if r is even, then R = N||M where || denotes

concatenation.

iv. Compute h = reshape(R,m,dn/2e).

d) Compute XLi+1 as the XOR of XRi with h, i.e. XLi+1 = XRi⊕h.

e) Concatenate XLi+1 and XRi+1 to form Xi+1 = XLi+1||XRi+1.

As mentioned by X. Wang and Guo (2014), x(0) = avg2 and thus it depends

on sum(P), which in turn depends on the plaintext P. In the chosen plaintext attack
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scenario (Goldwasser & Micali, 2014) considered by X. Wang and Guo, the attacker is

given the ability to request the encrypted image C for any chosen plain image P of the

attacker’s choice. Thus, sum(P) and x(0) would be known since the image P is chosen

by the attacker and thus shall not be considered as part of a secret key. Throughout this

chapter, we may use chosen plain image and encrypted image pairs to denote chosen

plaintext pairs.

9.3 Revisiting the Key Space of X. Wang and Guo Image Encryption Scheme

According to IEEE 754-1985 standard (2008), the computational precision of

the 64-bit double precision floating point number is approximately with 15 decimal

digits. X. Wang and Guo presented a rough key space analysis. More precisely, they

claimed that the key space was almost 1048 given that u,u′,y(0) and a single digit

positive integer r can be guessed roughly with the probability of 10−16,10−16,10−15

and 10−1 respectively.

Since T is a single digit (i.e., 0 to 9) and r must be greater than 2 to resist

plaintext and differential attacks, thus we have that 2 ≤ r ≤ 9 which contains only 3

bits of entropy. Besides, u,u′ ∈ (3.5699456,4] to result a chaotic logistic map and both

u and u′ are with 15 decimal places, thus u (or u′) can be guessed with the probability of
1

(4−3.5699456)×1015 ≈ 2−48.612. Similarly, y(0) ∈ (0,1) is with 15 decimal places

and can be guessed with the probability of
1

1015 ≈ 2−49.829. Finally, the secret key

K = 〈u,u′,y(0),T 〉 can be guessed with the probability of 22×(−48.612)+(−49.829)+(−3)

= 2−150.053 as compared to 10−48 ≈ 2−159.453 shown by X. Wang and Guo (2014).

After the key space is analysed in detail, the brute-force attack on X. Wang and Guo

image encryption scheme has a time complexity of 2150.053 encryptions as compared to

2159.453 encryptions claimed by X. Wang and Guo. Thus, an attacker aims to break an

image encryption algorithm with the time complexity less than the brute-force attack.

The existence of such attacks with time complexity better than brute-force attack will

indicate that such image encryption algorithm is insecure.
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9.4 The Impossible Differential Attack on X. Wang and Guo Image Encryption

Scheme

In this section, we first present an i-round differential with probability of one

based on the number of pixel’s differences. Subsequently, we show that such i-round

differential can be used to construct an impossible differential based on miss-in-the-

middle approach (Biham et al., 1999b). Finally, such impossible differential can be

exploited to launch an impossible differential attack on X. Wang and Guo image en-

cryption scheme for 2≤ r ≤ 9.

9.4.1 The i-Round Differential with F

We present an i-round differential of the X. Wang and Guo proposed image en-

cryption scheme with probability of one (see Figure 9.2 for the graphical presentation

of i-round differential). Given two plain images P and P′, the input difference equals

P⊕P′ and the output difference equals C⊕C′ where ⊕ denotes bitwise exclusive-or

operation. Note that C and C′ are obtained by encrypting P and P′ respectively using a

single unknown secret key K.

Let Hamming weight of a difference of α between two input images X and X ′,

HW (α) = j such that #{(X(i)⊕X ′(i)) 6= 0}= j for i= 1, . . . ,m×n/2 and j≥ 0 where

X(i) and X ′(i) represent the i-th pixel of the image X and X ′ respectively.

Since single unknown secret key K = 〈u,u′,y(0),r〉 is used to encrypt two dif-

ferent plain images P and P′ such that sum(P) = sum(P′), rk′i = rki for all Round i.

Thus, in each round, the same value of rk will be XORed with the left half of data.

Besides, the shuffling step is a permutation that depends on the value of x(0) (which

is based on sum(·)). Since sum(P) = sum(P′), the shuffling step will be the same

permutation for both images P and P′. We exploit these observations to construct the

following i-round differential of the X. Wang and Guo image encryption scheme with

probability of one.
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Figure 9.2: The i-Round Differential of the X. Wang and Guo Image Encryption
Scheme with Probability of One
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1. Choose two plain images P = (XL1,XR1) and P′ = (XL′1,XR′1) = (XL1,XR1⊕
4) keyed under the same unknown key, such that sum(P) = sum(P′). For

instance, two images can have right halves that differ and yet have their different

pixel values sum to the same amount, therefore rk′1 = rk1, and we have XR′2 =

XR2 and h′ = h.

2. We then have XL′2⊕XL2 = XR′1⊕XR1 = XR1⊕4⊕XR1 =4, and therefore

at the end of Round 1, we have the output difference (4,0m×n/2).

3. Going into the second round, we have that a difference4 goes into the shuffling

step, producing some difference5.

4. Subsequently, the output difference after Round 2 is (5,4).

5. Due to the observation that HW (4) = HW (5) as the shuffling step is a sum(·)-
dependent permutation and sum(P) = sum(P′), we extend the previous stated

two-round differential to four-round differential with probability of 1.

6. Some important observations from the four-round differential are HW (?4) ≤
2×HW (4) and HW (?5)≤ 3×HW (4) where the question marker ? j represents

an indeterminate difference for any integer j. This is because5 may equal4.

7. Continuing the same strategy, we can construct any-round differential with prob-

ability of 1. The output difference after Round i is (?i+1,?i) where HW (?i+1)≤
(i−1)×HW (4) and HW (?i)≤ (i−2)×HW (4) even though the specific dif-

ferences of ?i+1 and ?i remain unknown.

The limitation of this type of differential is (i−2)×HW (4)< (m×n/2), else one can

no longer distinguish this pattern. For example, let m = 6, n = 4 and HW (4)min = 2

such that sum(P) = sum(P′), imax = 7 where imax refers to the maximum number of

rounds such that the differential is still with probability of 1. To simplify the descrip-

tion, the above i-round differential is denoted as 〈0,4〉 i-r−→ 〈?i+1,?i〉.
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9.4.2 The Impossible Differential Attack

To initiate an impossible differential attack on r-round X. Wang and Guo image

alternate encryption scheme, a (r− 1)-round impossible differential can be exploited

and be constructed using the miss-in-the-middle approach (Biham et al., 1999b).

We give an concrete example in constructing an impossible differential attack

on 9-round X. Wang and Guo image encryption scheme since rmax = 9, however the

same attack approach can be generalised to attack 2- to 8-round X. Wang and Guo

image encryption scheme.

For T = 9, a straightforward approach in constructing an 8-round impossible

differential is to seek for i-round and j-round differentials with probability of one

where i+ j = 8. The other compulsory condition is that the output difference of i-

round differential must contradict with the input difference of j-round differential, i.e.,

the probability that i-round differential leads to j-round differential is 0. Hence, such

differential is named as an impossible differential.

We use a 7-round differential with probability of one, i.e., 〈0,4〉 7-r−−→ 〈?8,?7〉
and an 1-round differential with probability of one, i.e., 〈0,4∗〉→ 〈4∗,0〉 as the build-

ing blocks in constructing our 8-round impossible differential to attack 9-round image

alternate encryption algorithm. Besides, let HW (4) = 2 by choosing appropriate im-

ages P and P′ such that sum(P) = sum(P′). Note that HW (?8) ≤ 6×HW (4) ≤ 12

and HW (?7) ≤ 5×HW (4) ≤ 10. If HW (4∗) > 10, one may notice that the output

difference of 7-round differential with probability of one contradicts with the input

difference of 1-round differential with probability of one, i.e., HW (?7) 6= HW (4∗).
Thus, an 8-round impossible differential (〈0,4〉 8-r−−→ 〈4∗,0〉 with probability of zero)

is formed and can be exploited to recover the unknown secret key K = 〈u,u′,y(0),r〉
using the following attack procedure.

We give an example by setting m = 6 and n = 4. Note that to obtain the in-

put difference of 〈4∗,0〉 in Round 9, the output difference in Round 9 should equal
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〈5∗,4∗〉 where HW (4∗) = HW (5∗)> 10.

1. Select 2φ structures Si (a specific value of φ will be given below and for i =

1,2, · · · ,2φ ) where a structure is defined to be a set of 216 chosen plain images

such that all the plain images P have the same value in all pixels excepts 2 pixels

in the right half with fixed positions. In a chosen plaintext attack scenario, obtain

all the encrypted images for the 216 plain images in each of the 2φ structures.

2. For each structure, perform the following sub-steps:

a) Fix sum(P) = c+255 where c is the sum of all the pixels except the 2 pixels

in the right half with fixed positions. From the computer simulation, there

are 256= 28 out of 216 plain images satisfying this condition. The expected

remaining chosen plaintext-ciphertext pairs in a structure is 28. We denote

Ci, j as the encrypted image for plain image Pi, j for j = 1,2, . . . ,28.

b) Given the remaining 28 chosen plaintext-ciphertext pairs in a structure, for

1≤ l ≤ 28, generate all the
28× (28−1)

2
≈ 215 possible chosen plaintext-

ciphertext quartets (Pi, j,Ci, j, P̂i,l,Ĉi,l) wherePi, j 6= P̂i,l , sum(Pi, j) = sum(P̂i,l)

and HW (Pi, j⊕ P̂i,l) = 2.

c) Given the remaining 215 chosen plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,

Ĉi,l) in a structure, select those quartets such that Ci, j⊕ Ĉi,l have the form

of (5∗,4∗) where HW (5∗) = HW (4∗)≥ 11. Note that both halves have

6× 2 = 12 pixels. The expected remaining chosen plaintext-ciphertext

quartets in a structure is 215×∑
12
s=11

(12
s

)2
/22×12 = 215×145/224 = 2−1.82.

d) Compute x(0). Note that x(0) is same for any remaining plain images since

sum is fixed.

e) Guess a value for 248.612 possible key u and perform the following sub-

steps:

i. Given the remaining plaintext-ciphertext quartets (Pi, j,Ci, j, P̂i,l,Ĉi,l) in

a structure, shuffle right half of Ci, j and Ĉi,l to obtain h and ĥ respec-

tively.
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ii. Check whether h⊕ ĥ =5∗. If equal, then the guess of u is wrong and

thus can be filtered out.

Analysis. The attack requires 2φ × 216 chosen plain images. Step 1 has a time com-

plexity of 2φ+16 9-round encryptions. For a structure of 216 chosen plain images, Step

1 has a memory complexity of 216× (2) bytes ≈ 217 bytes since all other pixels are

fixed to a certain value. The memory complexity of Step 2(b) is 215×(2+24) bytes ≈
219.7 bytes to store all possible chosen plaintext-ciphertext quartets. Besides, Step 2(b)

has a time complexity of about 215 memory accesses to generate 215 chosen plaintext-

ciphertext quartets.

Next, Step 2(c) has a time complexity of about 215 memory accesses to ac-

cess 215 chosen plaintext-ciphertext quartets. Lastly, for a structure of 2−1.82 cho-

sen plaintext-ciphertext quartets, Step 2(e) has a time complexity of about 2−1.82×
248.612×(2 Shuffle + 1 XOR) operations. Since one-round encryption requires 1 Shuf-

fle and 2 XOR operations, thus we consider the sum of 2 Shuffle and 1 XOR op-

erations equals the time complexity of two-round encryption. Step 2(e) has a time

compexity of 2−1.82×248.612× 2
9 ≈ 244.622 9-round encryptions.

In total, the impossible attack has a time complexity of approximately 2φ+16+

2φ × (244.622) ≈ 2φ+44.622 9-round encryptions and 2φ × (215 + 215) = 2φ+16 mem-

ory accesses. An extremely conservative estimate is that 9 memory accesses equal a

9-round encryption in terms of time assuming that the E function with a round sub-

key is precomputed in a table and is equivalent to one memory access by neglecting

the computational complexity for the key schedule. Thus, one round is equivalent to

one memory access. As a consequence, the total time complexity of the impossible

differential attack is 2φ+44.622 + 2φ+16

9 ≈ 2φ+44.622 9-round encryptions.

The attack succeeds if the expected number of u that will not be filtered out

after performing the above attack procedure is less than 1 as one out of the 248.612

possible values of u must be correct. In the beginning of Step 2(e), the expected
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remaining chosen plaintext-ciphertext quartets in all the structures is 2φ−1.82. There

exists 248.612 permutations due to 248.612 possible values of u. Since an image has a 6×
4 = 24 pixels, each half consists of 12 pixels. Thus, the Shuffle operation is a 12×12-

pixel permutation and there exists 12! = 228.835 different 12×12-pixel permutations.

However, due to 248.612 possible values of u, then 219.777 different values of u will

generate the same permutation assuming that the permutation generated based on u is

uniformly distributed.

Observe that given any guess of u, the probability that h⊕h′ =5∗ is 2−28.835

(one out of 228.835 permutations) and thus the probability that each of the 228.835 possi-

ble values of u is filtered out using one of 2φ−1.82 possible chosen plaintext-ciphertext

quartets is 2−28.835. It follows that the expected number of u that will not be filtered

out after performing the above attack procedure is 228.835× (1−2−28.835)2φ−1.82
. Thus,

by letting φ = 50.655, only 219.777 of the 248.612 possible values of u will remain.

As a conclusion, the impossible differential attack has a time complexity of

2φ+44.622 = 295.277 9-round encryptions, a memory complexity of 251.215 bytes (which

is dominated by the step in storing the list of filtered wrong key bytes) and a data

complexity of 2φ+16 = 266.655 chosen plaintexts. Equipped with 219.777 possible values

of u, the attacker can recover the remaining secret key 〈u′,y(0),T 〉 using brute-force

attack with time complexity of 2121.218 9-round encryptions.

Remark: The above attack procedure can be generalised to attack X. Wang and Guo

image encryption scheme for T = 2 to 8 as the attacker can always construct a j-round

impossible differential (i.e., 〈0,4〉 j-r−−→ 〈4∗,0〉 with probability of 0) for j = 1 to 8

by letting HW (4) = 2 and HW (4∗) > 10. By using different size of images, one

may obtain better attack in terms of time complexity. We leave the details to interested

readers.

196



www.manaraa.com

S
iti H

asm
ah D

igital Library
9.5 A Divide-and-Conquer Attack using A Large All Black Image

When an all black image P (i.e., P(i) = 0 for i = 1,2, . . . ,m×n) is encrypted,

sum(P) = 0 and thus x(0) = 0 for 3.5699456 < ui ≤ 4 for i≥ 0. This contradicts with

Guo and Wang’s description that x(0) 6= 0. In this scenario, an all black image P will

be encrypted to the same encrypted image C if all the secret keys have the same value

of u′,y(0) and r regardless any value of u.

We exploit the above observation to launch a divide-and-conquer attack on

X. Wang and Guo image encryption scheme. The attacker may use the following

attack procedure to find the secret key K = 〈u,u′,y(0),r〉 with time complexity lesser

than a brute-force attack.

Let C be the encrypted image of an all black image P under the secret key k

and each pixel is of 1 byte. Besides, the attacker is assumed to have plaintext pairs of

(Pi,Ci) for i≥ 1 and Ci is the encrypted image of Pi under the secret key K. Note that

Pi 6= P and each Pi is different for different value of i.

1. Randomly fix a value for u as it will not affect the E function. This is because for

an all black image P, sum(P) = 0 and thus x(0) = 0 for any value of u. Similarly,

x(i) = 0 for i ≥ 1 which indicates the same permutation will be applied for any

value of u.

2. Guess a value for 8 possible values of r and perform the following sub-steps:

a) Guess a value for 248.612× 249.829 = 298.441 of u′ and y(0), perform the

following sub-steps:

i. Encrypt P to generate the encrypted image C′ using the guessed value

of u′,y(0) and T .

ii. If C =C′, store the candidate of 〈u′,y(0)〉.

b) For the remaining 298.411/(m×n) bytes = 295.411−|m|−|n| possible values of

〈u′,y(0)〉 where |i| denotes the length of i in bits, guess a value for 248.612
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possible values of u and perform the following sub-steps:

i. Encrypt P1 to generate the encrypted image C′1 using the guessed value

of u,u′,y(0) and r.

ii. Discard the secret key k′ = 〈u,u′,y(0)〉 if C′1 6=C1.

iii. If C′1 =C1, the total remaining possible values of secret key is

292.411−2|m|−2|n|. Repeat the Step 2(b)(ii) and Step 2(b)(iii) until one

unique value of secret key remains using different plaintext Pi.

c) Use one additional plaintext-ciphertext pair (P′′,C′′) and check whether the

remaining secret key is the right key. If not, then the guessed r is wrong

and repeat the above steps with other value of r.

Analysis. As a concrete example, if a plain image P with high resolution has 16384×
16384 pixels (i.e., such image is with 214× 214× 23 bits = 256 MB), then Step 2(a)

has the time complexity of 298.411 encryptions and needs one pair of (P,C). The total

possible values of secret keys that passes Step 2(a) is 298.411−3−14−14 = 267.411. In Step

2(b), there exist 267.411+48.612 = 2116.023 possible values of secret keys. Thus, Step 2(b)

needs 4 additional plain image and encrypted image pairs (i.e., (P1,C1), . . . ,(P4,C4))

to reduce 2116.023 possible values of secret keys to only one unique secret key. The

Step 2(b) has the time complexity of 2116.023 + 285.023 + 254.023 + 223.023 ≈ 2116.023

encryptions. Lastly, consider the worst case where the attack procedure is repeated for

8 times (i.e., r = 2 to 9), the overall time complexity is around 8× 2116.023 = 2119.023

encryptions. Meanwhile, the total plaintext-ciphetext pairs needed is 6. Note that the

efficiency of the attack greatly depends on the size of underlying plain image. Due

to the emerging of technology, the size of an image becomes larger from time to time

(e.g., medical imaging and pattern recognition) and thus the attack will become faster

and needs lesser plain image and encrypted image pairs.

9.6 Summary

Both presented impossible differential and divide-and-conquer attacks on r-

round X. Wang and Guo image encryption scheme for 2 ≤ r ≤ 9 justify that the se-
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curity of X. Wang and Guo image encryption scheme had been over-estimated by the

designers. Moreover, impossible differential attack is a kind of chosen plaintext attack

being examined and considered by X. Wang and Guo (2014). Many image encryp-

tion schemes are said to have good property against differential attack by showing the

measured NPCR and UACI are close to the ideal values. However, our result shows

that these two values are not adequate to conclude that an image encryption scheme

is secure against impossible differential attack. We note that even the showed attacks

are still of high complexity, but these attacks are faster than brute-force attack up to

around 228.835 ≈ 478 million times. Through our observations and attacks, we con-

clude that it may not be a good idea to design a round function that depends on two

parts of secret key, e.g., 〈u′,y(0)〉 and 〈u〉 while these two parts of secret key affect the

round function independently. Lastly, the designer shall not justify that the proposed

image encryption scheme has good property to resist differential attack based on two

quantitative measures (i.e., NPCR and UACI).
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CHAPTER 10

CONCLUSION AND FUTURE WORK

In this chapter, we summarise the main contributions and results of this thesis.

We then wrap up this thesis with some suggestions for future research work.

10.1 Conclusion

The cryptanalytic results obtained in this thesis on block ciphers and image

encryption schemes are listed as follows.

• We have presented related-key differential and related-key amplified boomerang

attacks on the full MISTY1 under certain weak key assumptions.

• We have exhibited two 7-round differentials with probabilities strictly bigger

than the best previously known one on the SEED cipher and presented a differ-

ential cryptanalysis attack on a 9-round reduced version of SEED.

• We have demonstrated an impossible differential attack on the full CHAIN ci-

pher for variable block length based on a generalised impossible differential.

• We have shown the weaknesses of the Key Schedule algorithms proposed in

two recent image encryption schemes (Norouzi & Mirzakuchaki, 2014; X. Wang

& Wang, 2014) where the effective space spanned by the subkeys generated from

a secret key is a much smaller subset as compared to the secret key space.

• We have presented the first impossible differential attack on an image encryp-

tion scheme (X. Wang & Guo, 2014) which subsequently disproved a general

assumption that an image encryption scheme is said to possess good properties

to resist differential attack based on two quantitative measures. This finding also
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suggests that the rules to design an image encryption scheme must be assessed

from cryptographic perspectives as well.

The results exhibit the first concrete cryptographic weaknesses in the full MISTY1

cipher, full CHAIN cipher, X. Wang and Wang image encryption scheme, Norouzi and

Mirzakuchaki image encryption scheme and Wang and Guo image encryption scheme.

In addition, our result on SEED is better than any previously published cryptanalytic

results on this cipher in terms of the number of attacked rounds and it suggests for

the first time that the safety margin of SEED decreases below half of the number of

rounds. Such results are important as both SEED and MISTY1 are ISO standards.

In the context of message authentication codes and modes of operation, we

have analysed the security of GMAC and GCM with respect to the forgery and dis-

tinguishing attacks. More precisely, we obtained the following results on GMAC and

GCM:

• We have generalised the set of weak key classes proposed by Saarinen (2012) to

include all subsets of nonzero keys. Hence, we have removed the condition on

the smoothness of 2n− 1, where n denotes the block size, for the existence of

weak key classes.

• By considering powers of suitable field elements and linearised polynomials,

we have exploited some specific weak key classes to present a universal forgery

attack on GMAC.

• By invoking the birthday paradox arguments, we have showed that a chosen

message attack can be used to distinguish GMAC from a random function.

• To relax the assumptions required in the universal forgery attack, we have demon-

strated that we can utilise the uniqueness of the counter mode encryption to

launch a known ciphertext attack against GCM itself when the initial vector (IV )

is restricted to 96 bits.
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We remark that the first three attack techniques can be applied to all Wegmen-Carter

polynomial message authentication codes. Parts of the results of this thesis were in-

dependently found by Procter and Cid (2013) and McGrew (2012). McGrew named

the uniqueness of the counter mode that can be exploited to launch a known ciphertext

attack on the counter mode encryption as impossible plaintext cryptanalysis. Note that

GCM is an ISO standard and widely used in real-life security protocols.

In addition, we have presented weaknesses of the PMAC schemes arising from

two main characteristics of the constants in the construction. These weaknesses allow

us to launch forgery attacks on different PMAC versions. However, we emphasise that

our attacks did not break the security bound of PMACs. Rather, we provided explicit

attacks which achieve these bounds in some instances. Note that PMAC is part of OCB

which is an ISO standard.

10.2 Future Work

In view of the research conducted in this thesis, we suggest some possible inter-

esting directions to cryptanalyse block ciphers and block cipher based constructions:

• The results we obtained against MISTY1 rely on weak key and related-key as-

sumptions and with high complexity. It would be better if a new attack could

be mounted with a practical time complexity under a single unknown secret key

scenario.

• It would be interesting to explore whether some good cryptanalytic results could

be obtained when we apply the attack techniques on GCM to other Wegmen-

Carter polynomial message authentication codes and some real-world applica-

tions that make use of the counter mode encryption. Similarly, we may explore

whether the observations we obtained on PMAC could be applied to the ap-

plications that make use of the same constant generation method, especially to

the authenticated encryption candidates submitted to the CAESAR competition

(e.g., AES-OTR (Minematsu, 2015), AES-COPA (Andreeva et al., 2015) and
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SHELL (L. Wang, 2015)).

• Image encryption is a new but fast moving field. From the results obtained in this

thesis, we may conclude that the security of an image encryption scheme is not

analysed from widely studied cryptanalytic perspectives. Applying cryptanalytic

attacks on image encryption schemes may lead to new design rules for an image

encryption scheme. In addition, the analysis of the subkey space can be extended

to any image encryption scheme even though it does not require an external

secret key.
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